The MAU EBURU FOREST

– A VISITORS' GUIDE

A publication of the RHINO ARK KENYA CHARITABLE TRUST
Contents

FOREWORD 5
WELCOME 7
INTRODUCTION – Our Forests, Our Future 8

PART ONE: THE STORY OF MAU EBURU

THE LIE OF THE LAND – Eburu, ‘Mountain of Steam’ 10
A CULTURAL HISTORY – The People of Mau Eburu 12
THE HISTORICAL BROADER ECOSYSTEM – The Mau Forests Complex 16
A HAVEN FOR BIODIVERSITY – ‘Island’ Mau Eburu 19
THE CONSERVATION EFFORT – The Mau Eburu Fence 22
THE CONSERVATION FOCUS – The Mountain Bongo 26

PART TWO: THE LIVING MAU EBURU FOREST

FOREST FLORA – The Plants 30

MAP OF THE MAU EBURU FOREST 36–37

FOREST FAUNA – Invertebrates 38
– Amphibians and Reptiles 42
– Birds 44
– Mammals 50

PART THREE: EXPLORING MAU EBURU

HIKING TRAILS – Introduction 54
(1) Eastern Summit Trail 58
(2) Western Summit Trail 60
(3) Deep Valley (Waterfall) Trail 62
(4) Ndabibi–Forest Glade Trail 64
(5) Ngalumoni (Cave) Trail 66
(6) Litatano Spring (Kahuho) Trail 68

CREDITS & ACKNOWLEDGEMENTS 71
LAST WORD – About RHINO ARK 72
Allophylus abyssinicus
cosystems measures to protect the Eburu Forest Reserve have been scaled up considerably in recent years. The Kenya Forest Service (KFS) has been able to do this through engaging in highly productive public/private-sector partnerships, and through proactive engagement with the forest-adjacent local communities.

For the KFS, these are the policy cornerstones prescribed in law for effective long-term forest conservation and management. Already, the involvement of private-sector partners has been instrumental in securing forests elsewhere in the country – on the Aberdares, for example, and the Karura Forest, near Nairobi. The construction of electric fences around these forests, and the maintenance of the security fences, has been crucial in providing a springboard for the introduction of conservation programmes that, today, are benefitting Kenyans in many ways.

The benefits of the 43.3-km-long fence now in place around the perimeter of the Eburu Forest are already apparent. By limiting access to the Reserve, the fence has reduced the extent of unauthorised activities in the forest, including logging, charcoal production, and poaching. The resulting decline in forest degradation and disturbance will have enormous benefits for people, not least in safeguarding vital water resources.

The Eburu Forest Reserve is also one of the few remaining wild habitats of the critically endangered Mountain Bongo antelope, which is endemic to Kenya. Eburu’s conservation is therefore critical to ensuring that the Mountain Bongo can survive.

For their help in raising funds and providing expertise for the conservation of the Eburu Forest, the KFS is especially grateful to its partner organisations, including the Rhino Ark Kenya Charitable Trust, the Kenya Wildlife Service, the M-PESA Foundation, and Finlays (now Flamingo) Horticulture, as well as to the forest-adjacent Eburu communities.

As a wilderness attraction, the Eburu Forest, with its stunning natural scenery and its interesting and diverse wild fauna, clearly has great promise. Recognising this, the KFS is working with Eburu’s Community Forest Association on a revised Participatory Forest Management Plan that will include provision for development of eco-tourism facilities.

In being located within easy reach of urban centres, including Naivasha, with its well-established hospitality industry, Eburu has enormous recreational potential. Realisation of this potential is identified as a priority in the KFS Ecotourism Development Master Plan. Infrastructure development in the Reserve, including improved roads, has been prioritised accordingly.

Visitors to the forest have a major role to play in helping to consolidate and build upon existing conservation gains. So the advent of this Visitors’ Guide is particularly opportune. The wealth of useful information in the Guide will inspire people to visit the Eburu Forest Reserve – to see for themselves and to enjoy its many wonderful attributes, here showcased for the first time. And this in turn will help to foster a broader public engagement with, and participation in, the conservation process.

Like so many of the other outcomes of the Eburu conservation effort, the compilation of this guidebook has been a feat of constructive teamwork, involving the pooling of expertise and knowledge from many different quarters, including the local Eburu communities.

It is my great privilege, here, and on behalf of KFS, to be introducing a publication that, I believe, constitutes an important milestone for the conservation of forests in Kenya.

Emilio N. Mugo
Director, Kenya Forest Service
INTRODUCTION
The Mau Eburu Forest, the subject of this guidebook, has in the past attracted very little public interest or attention. Some people, even now, may not have heard of Mount Eburu. Yet this mountain – and its beautiful indigenous forest vegetation, uncommonly rich in biodiversity – is undeniably one of the great treasures of the Great Rift Valley in Kenya.

Such is the importance of this forest that, since 2012, the Rhino Ark Kenya Charitable Trust has been engaged in a major, long-term conservation initiative, aimed at preserving and sustainably managing the Mau Eburu Forest. This is being done in association with, and for the benefit of, all the people who depend on this forest, and on the water and other ecosystem services it delivers, for their basic needs and livelihoods.

Known as the Eburu Ecosystem Conservation Project, this ongoing Trust initiative is the result of a highly productive public/private-sector partnership with the Kenya Forest Service, the Kenya Wildlife Service, and the forest-adjacent communities, with support from the M-PESA Foundation, from Finlays (now Flamingo) Horticulture, and from the Kenyan Treasury.

The anchor-point of the project has been the construction of a 43.3-km electric fence around the mountain. This fence has been instrumental in protecting farmers and crops in neighbouring areas from the ravages of wild animals. The securing of a wildlife corridor between Mount Eburu and Lake Naivasha has further reduced human–wildlife conflict. Through the project, local communities have been able to participate in, and to reap the rewards of, a wide range of conservation-related activities and best practices.

This Visitors’ Guide, almost two years in the making, is another of the project’s core components. Its function is to raise the public profile of the forest, while at the same time encouraging people, both from elsewhere in Kenya and from abroad, to visit Mau Eburu and to discover the many fascinating secrets of this hitherto forgotten forest. By attracting visitors, and by paving the way for broader public involvement in the conservation effort, this guidebook has a crucial role to play in helping to shore up the long-term sustainability of the conservation successes registered to date, across the ecosystem as a whole.

The Mau Eburu Forest – A Visitors’ Guide is, above all, a fascinating read. It tells the story of a remarkable mountain – of how it came into being, and of why it is so important, both culturally and in terms of the biological diversity that it supports. The natural history accounts presented in the guidebook provide the most comprehensive synthesis on record of what is known, to date, about the flora and fauna and the ecology of the mountain. This baseline information will, in years to come, serve as a useful platform on which to develop further knowledge and understanding.

In presenting a choice of six nature trails, the guidebook invites readers to visit Mount Eburu and to experience, at first hand, some of the wonders of the Mau Eburu Forest. For each trail, detailed route notes are provided, along with beautifully illustrated descriptions of the stunning forest scenery, and of the spectacular views over the Great Rift Valley and its lakes, which await visiting walking parties.

These nature trails give you the chance to explore Mount Eburu, and so to become a part of this amazing conservation success-story. It is my great pleasure, then, to introduce this guidebook and to welcome you to the Mau Eburu Forest. Enjoy the read! And enjoy the walks!

Christian Lambrechts
Executive Director
Rhino Ark Kenya Charitable Trust
INTRODUCTION

Our forests, our future

NEVER, in historical times, has forest cover in Kenya been very extensive. Climatic conditions today are such that no more than about 15% of the country’s landmass can naturally support closed-canopy forest. Such forest, then, is confined to wetter parts of the country – to the slopes of hills and mountains, primarily, standing in the path of moisture-bearing winds.

Within the past 100 years, however, relentless deforestation has seen even this limited amount of forest cover decline alarmingly – to little more than 2% of the country's land area, according to the most recent surveys. This is below the threshold seen as critical to maintaining a stable climate and to providing the water security Kenya now needs, if it is to be able to go on sustaining its rapidly increasing human population.

What highland forest cover remains is now of critical national importance. Mountains and hills, by intercepting moisture-bearing winds, lift and cool the air – forming clouds and producing rainfall, which then finds its way into rivers and streams. It is this rainfall that sustains the forest cover. And it is the forests, through a process of evapotranspiration (that of returning moisture to the atmosphere), which in turn help to generate the precipitation.

By holding the rainwater in the manner of a living sponge, the forests then also ensure that the water is released only gradually – enabling the rivers and streams to keep flowing, even over prolonged dry periods.

This hydrological cycle is the basis, year-round, for all human livelihoods in the region, and for all forms of economic activity.

Today, Kenya’s larger forests are concentrated in five major blocks – on the Aberdare Mountains, Mount Kenya, the Mau Highlands, the Cherangani Hills, and Mount Elgon. Known as ‘water towers’, these five great mountain forest ecosystems, while collectively covering less than 2% of the country’s land area, form the upper catchments for all but one of the country’s most important rivers.

The forested water towers play a critical role in regulating climate; in storing water and replenishing groundwater; in maintaining river flows; in flood mitigation; in preventing soil erosion and reducing siltation in water bodies, and in nutrient recycling and soil formation, as well as in carbon storage and sequestration.

The lives and livelihoods of most Kenyans depend in some way on these water towers. It is they which provide us with most of the water that we drink; the water from which we get our electricity; the water that nurtures our agriculture, and which sustains our livestock herds and our freshwater fisheries; the water that we need for our industries, and the water on which most of our cities and our towns depend.

As pillars of biological diversity, the water-tower forests, despite their limited extent, harbour a disproportionately large percentage of Kenya’s wild flora and fauna, including many threatened species of animals and birds, as well as plants. And it is the rivers which emanate from these forests that provide the lifeline for our tourism industry, provisioning wildlife populations and habitats downstream – in protected areas of global renown, such as the Masai Mara National Reserve and the Lake Nakuru National Park.

Not surprisingly, given how much we all rely on these mountain forest ecosystems for our social and economic well-being, their preservation is one of the cornerstones of Vision 2030 – Kenya’s development blueprint for achieving greater prosperity and a better quality of life for present and future generations of Kenyans, in a healthy and stable environment.

To this end, collaborative public/private-sector partnerships are recognised as crucial. A revitalised Kenya Forest Service, established in 2005 to replace the Government’s old Forest Department, has engaged accordingly in several such partnerships. Already, these partnerships – involving community groups; representatives from the Kenyan corporate sector; non-governmental organisations (including the Rhino Ark Kenya Charitable Trust), and other Government agencies (such as the Kenya Wildlife Service) – have spawned projects that are making huge strides towards protecting Kenya’s precious
remaining natural forests, while at the same time securing tangible long-term benefits for the many millions of people who, for their basic needs and livelihoods, depend on the health of these fragile forest ecosystems.

And this in turn is giving Kenya the wherewithal the country will need in order to attain its progressive long-term development goals.

Conspicuous among these projects has been the construction, around the Aberdare National Park and Conservation Area, of an electrified fence almost 400 km long. Erected in nine phases between 1988 and 2009 with funding raised by the Rhino Ark Kenya Charitable Trust, this fence – the longest ever built for conservation – protects more than 2,000 km² of prime catchment forest.

In providing a basis for wide-ranging follow-up programmes involving people in forest-adjacent local communities, the Aberdare Fence has proved hugely beneficial as a management intervention. By preventing human–wildlife conflict, this fence has resulted in improved crop yields and in safer living conditions. Sustainable land-use practices, based on tree-planting and plantation forestry, have increased markedly within the settled areas. Without the destructive impacts of illegal logging, forest-clearing, charcoal production, wildfires, and hunting for bush-meat, the natural forest cover has not only been preserved; it has also been able to regenerate and spread, re-afforesting in the process formerly degraded forest lands.

The demonstrable success of this project – and of all the conservation and sustainable land-use initiatives which have grown up around it – has encouraged Rhino Ark and its public- and private-sector partners to embark on similar fencing projects and participatory forest management programmes around water-tower forests elsewhere in the country.

Since 2012, work on an electrified conservation fence around the Mount Kenya Forest has been under way. When it is complete, sometime in the 2020s, the Mount Kenya Electric Fence will be roughly 500 km long – that is, longer even than the Aberdare Fence. And it will enclose another 2,700 km², or more, of prime catchment forest.

Meanwhile, in 2014, work was completed on another, rather more modest (if no less important) conservation fence – skirting the Mau Eburu Forest near Lake Naivasha in the Great Rift Valley.

Although comparatively little known, the Mau Eburu Forest – readily accessible – is a gem of priceless value, both as a water catchment and as a haven for biological diversity.

The aim of this Visitors’ Guide is to encourage you to explore Mau Eburu and to share in its many fascinating secrets. So, go there – and enjoy this precious forest treasure.
Eburu, ‘Mountain of Steam’

The Mau Eburu Forest covers the slopes of Mount Eburu—a striking, geologically active volcanic massif towering above the floor of the Great Rift Valley in Kenya, north-west of Lake Naivasha. Climb the mountain, and you will be rewarded, looking south-east, with magnificent views, over the forest canopy and out across this shimmering freshwater lake, towards the classic volcanic cone of Mount Longonot, dominating the Rift floor beyond.

Look north, and the panorama spread before you, across the Soysambu Conservancy, will take in the glistening gems of two of the Rift Valley’s most exquisite alkaline lakes, Elmentaita and Nakuru.

The Eburu massif rises from a broad spur projecting eastward into this ruggedly scenic Rift-floor landscape from the soaring Mau Escarpment, here constituting the Rift Valley’s western wall. Mount Eburu’s two highest peaks — standing 2,855 m (9,365 ft) and 2,823 m (9,260 ft) above sea level — rise more than 800 m above adjacent areas on the Rift floor, in forming the pinnacles of a natural drainage divide between the lake-basins of Naivasha, to the south and east, and Elmentaita–Nakuru, to the north.

Geologically, Mount Eburu incorporates two main entities, Western Eburu and Eastern Eburu, formed during different phases of the intense volcanic activity that has continued to occur here even in comparatively recent times, within the past 30,000 years; i.e. long after the tumultuous down-faulting, millions of years earlier, which gave birth to the Rift Valley itself.

Eastern Eburu, the more recent of these two volcanic piles, is still active today, having numerous hot-springs and steam-jets that hiss, gurgle, and spit from fissures in its flanks, which are pock-marked with spectacular explosion craters, some more than one kilometre across. Indeed, the massif as a whole takes its name from the descriptive label *Ol Doinyo Opuru*, meaning ‘Mountain of Steam’, assigned by the Maasai people some 300 years ago, in the 18th Century, after they first encountered this volatile Eastern part of the massif.

Most of the craters on Eastern Eburu are clustered along north–south fault-lines cutting across the massif’s eastern and north-eastern slopes, above the present-day settlement of Eburru. It is on fault-scarps in recent lava flows in this heavily cratered area that most of today’s surface geothermal activity is concentrated. Here, local people have long made use of improvised condensers to ‘trap’ water from the jets, for drinking and domestic use. The steam from most of these jets is remarkably devoid of sulphur and other contaminants.

Today, this geothermal resource is in the process of being developed by KenGen (the Kenya Electricity Generating Company) as a source of additional energy for the national power grid. Already, KenGen’s older Olkaria Geothermal Plant, in the Njorowa Gorge on Naivasha’s southern lakeshore, has irrevocably altered landscapes in and around the Hell’s Gate National Park. And now, parts of Eastern Eburu too are being transformed, in having to accommodate a burgeoning infrastructure of generating plant, pipework, service roads, and overhead transmission lines.

Western Eburu, by contrast, is geologically somewhat older, being the result of a series of fiery volcanic upheavals going back over tens of

1 While the name of the Forest Reserve is gazetted as ‘Eburu’, the spelling ‘Eburru’ is used for the nearby settlement. The two spellings are often used interchangeably, however.
THE LIE OF THE LAND

thousands of years. Successive eruptions of ash and of disgorged molten rock – taking the form of trachytes, mainly, and of related phonolites – were to build up over time, only to be covered by more recent lava flows, of rhyolite and basalt and other extruded volcanic rocks, including (most recently) showers of soft pumice and ash erupting from the younger centres of activity on Eastern Eburu.

No more than about five kilometres apart, the summits of Western Eburu and Eastern Eburu (the latter’s being marginally the higher of the two) are linked by a steep-sided saddle, the crest of which sits more than 2,500 m (8,200 ft) above sea level. Around both summits, there are dense stands of upland forest, which extend down the rugged, tumbling flanks of the saddle area between the peaks and over the spines of plummeting ridges, into deeply gouged valleys.

Gouged by streams, these deep valleys are a testament to the soft, friable nature of Eburu’s young volcanic surface rocks, which crumbled rapidly on being exposed to the elements, and which soon eroded to form a mantle of rich volcanic soil, easily washed away and yet at the same time ripe for colonisation by a succession of anchoring forest shrubs and trees.

Eburu’s elevation, high above the Rift floor, has proved hugely influential in shaping local weather patterns. By intercepting moisture-bearing winds, the massif lifts and cools the air, forming clouds and producing regular localised rain showers. This rainfall is crucial for those inhabiting the Naivasha and Elmentaita–Nakuru lake-basins – which, in being located within the ‘rain-shadows’ of two of Kenya’s major water towers, are comparatively dry.

To one side, high above the Rift Valley’s eastern wall, the Aberdare Mountains stand directly in the path of the seasonal south-easterly monsoon winds, which account for most of the rainfall that Kenya receives. On the other side, the bulk of the Mau Highlands, west of Mount Eburu, intercept the moist continental winds from Lake Victoria – the country’s other major purveyor of rainfall. The result, for the Naivasha and Elmentaita–Nakuru lake-basins in between, is that annual precipitation is meagre, amounting on average to no more than 610–710 mm (24–28 inches).

The Mau Eburu Forest plays a crucial role in soaking up and storing localised rainfall over Mount Eburu. From springs in the forest, this water finds its way into streams, and then into underground flows, draining northward towards Nakuru or southward into the Naivasha basin. And it is this water which, in turn, helps to sustain the many agricultural and other human activities that have become established around the mountain.
The People of Mau Eburu

The lakes cradled within Africa’s Great Rift Valley have – down the ages – created ideal habitats for humankind. The great Stone-Age cultures of early modern humans in Africa flourished among hunter/gatherer groups clustered around these lakes. The lakes provided plentiful water, while also attracting an inexhaustible supply of food, in the shape of wild prey animals. The skeletal remains of some of the prehistoric hunter/gatherers, along with stone weapons, tools and other artefacts they left behind, preserved in the sediments of old lake-beds, amount to an extraordinarily rich legacy for archaeologists.

In being located at the heart of Kenya’s lake-studded central Rift Valley region, Mount Eburu occupies a very special place in the annals of African pre-history. Indeed, one of the defining periods of the New Stone Age – the Eburran – is named after the mountain.

The lakes synonymous with this region today – Naivasha, Elmentaita, Nakuru – have, like those elsewhere in the Rift Valley, undergone extreme transformations over the past 2.5-million years. During the Pleistocene, prolonged wet periods (or pluvials), alternating with extended arid periods (inter-pluvials), saw these lakes expand considerably at times – only to recede again, often to the point of disappearing altogether.

The most extreme flooding occurred between 30,000 and 20,000 years ago, during the Gamblian (Fourth Pluvial) phase of the Late Pleistocene, when Naivasha, Elmentaita, and Nakuru – today mere puddles by comparison – were all conjoined in one vast ‘super-lake’ standing more than 30 metres above the level of present-day Lake Naivasha. Undermined by persistent down-faulting, this gigantic lake would eventually drain away, creating the spectacular breach of tumbled cliffs and scarred gorges known today as Hell’s Gate.

It was an earlier period of flooding, more than 700,000 years ago, during the Kamasian (or Second Pluvial), which displaced some of this region’s early proto-human inhabitants from their lakeside encampments. Acheulean hand-axes of the kind used by Homo erectus more than one-million years ago are among the numerous stone weapons and tools which have been found in diatomite sediments east of Elmentaita, at Kariandusi – a Palaeolithic (Early Stone Age) site first excavated in the 1920s.

The Stone-Age tools found in such abundance at other archaeological sites north and north-east of Eburu, in the Elmentaita–Nakuru lake-basin, are of more recent provenance. Most are blades made from flaked obsidian, a form of dark volcanic glass common in this part of the Rift Valley, or from quartz-trachyte, another locally plentiful volcanic resource. Smaller and more intricately worked than their Palaeolithic equivalents, these tools were made by modern humans, Homo sapiens, during the Mesolithic (Middle Stone Age), between 100,000 and 35,000 years ago. Such tools have been found at prehistoric sites far away, in areas where obsidian does not naturally occur – suggesting that, by the end of the Mesolithic, tools made here were being traded widely among roving hunter/gatherers, over considerable distances.

Tool-making in the late Mesolithic became more specialised, as an increasingly broad array of finely crafted smaller tools (known as microliths) were produced, to serve a correspondingly wide range of different functions. Here, in the Nakuru lake-basin, at the foot of Mount Eburu and of the Late-Stone-Age hub: One of the Gamble’s Caves at the NW foot of Mount Eburu, where The Eburran Industry once thrived.
Mau Escarpment, the production of such ‘tool-kits’ was to reach its zenith between 12,000 and 3,000 years ago, during that period of the Neolithic (New Stone Age) known as the Eburran Industry.

Some of the finest assortments of Eburran artefacts are those which were found in the 1920s in Gamble’s Caves and in the sediments of the Nderit Drift on the old floodplain of the Nderit River flowing into Lake Nakuru. Microliths unearthed here include a variety of obsidian backed-blades (flaked stone knives with one edge blunted, so as to fit neatly into the palm of the hand without cutting into the fingers), hammer-stones, scrapers, burins (chisel-like stone tools used for splitting bones or stripping hides), and sharp-pointed awls.

By this time, Eburu’s inhabitants, based in caves and rock-shelters, were leading more settled lives. They had burial sites for interring their dead. Skeletons, of people buried here between 9,000 and 3,000 years ago, have been unearthed. The Eburrans were also making pottery and beads (from the shell fragments of ostrich eggs, for example, shaped into tiny discs) and other ornaments.

This budding indigenous civilisation, though, was to prove short-lived …

About 3,000 years ago, when conditions in eastern Africa were far drier than they are today, outsiders from the north, with their herds of cattle, arrived in this part of the Rift Valley, soon to be followed by other groups, with goats and sheep as well. The newcomers were Southern Cushites from south-western Ethiopia. A drying climate there had forced them into moving southward in search of better-watered pastures for their livestock animals.

The Southern Cushites would go on to dominate this central Great Rift Valley region for more than 1,000 years – until the First Century of the Common Era. In this time, they transformed the landscapes of the Rift floor, converting areas of woodland and bush into open grassland. This was achieved through their practice of regular burning, to stimulate renewal among grasses (and also to kill the larvae of ticks), and through sustained grazing pressure from their livestock herds, which gradually replaced the native wild fauna. Theirs was traditionally a mixed livestock-and-arable economy, so the Southern Cushites, while predominantly pastoralists, may also have introduced the food-crops sorghum and finger-millet (both originally from their native Ethiopia).

The people of Eburu, then few in number and very sparsely distributed, were ill-prepared for
this influx. As hunter/gatherers, they were never in direct competition with the newcomers, who neither hunted nor ate the flesh of wild animals. Gradually, though, in having to defer to their powerful new neighbours, the hunter/gatherers were assimilated into the dominant Southern-Cushitic culture. Trade and inter-breeding over generations led to their adopting the language and the customs of the pastoralists. Native Eburran culture was diluted accordingly – until eventually it died out altogether.

Alas then, no-one knows what language Eburu’s aboriginal inhabitants might have spoken, or even what name they might have used in referring to themselves – or to the mountain around which they lived.

Southern-Cushitic culture would itself go on to be steadily undermined, after the arrival, nearly 2,000 years ago, of another wave of immigrants – this time from the north-west. These new immigrants were Southern Nilote pastoralists from what is now South Sudan. Gradually, over the next 1,500 years, interaction and inter-breeding between the incoming Southern Nilotes and the Southern Cushites would produce the peoples today known collectively as the Kalenjin. The resulting proto-Kalenjin groups would dominate the central Rift Valley region until the 18th Century – and the coming of the Maasai.

Isolated clusters of hunter/gatherers had been present in forests here, even before the arrival of the Southern Cushites. The people of Eburu, then, were not the only aboriginal hunter/gatherers to be encountered. Like them, other groups would go on to be subjugated and then gradually absorbed – either by the proto-Kalenjin or, later, by the Maasai. What disparate hunter/gatherer groups remained in the forests of the Mau Escarpment and elsewhere would come to be known collectively as the Ogiek – or ‘Forest People’.

The arrival of Maasai pastoralists, early in the 18th Century, would have far-reaching implications for the peopling of the region. In expanding southward, the Maasai – Eastern (Plains) Nilotes originally from parts of western Ethiopia and the Sudan – had developed what then amounted to an extraordinarily high level of social organisation, complete with a formidable moran warrior caste, which enabled them to prevail militarily, while seizing cattle from other groups.

In going on to dominate the central Rift Valley region, the Maasai displaced resident Kalenjin populations, forcing them into settling instead in adjacent highland areas west of the Rift. Other groups, driven ever further southward, would eventually find refuge in the northern highlands of present-day Tanzania – where living descendants of some displaced groups (Cushitic-speakers, such as the Iraqw, among them) can still be found today.

Maasai expansion was abruptly curtailed late in the 19th Century, soon after the arrival in East Africa of the first Europeans. In the 1880s and 1890s, epidemics of two alien livestock plagues – rinderpest and bovine pleuro-pneumonia – swept through eastern Africa, killing nearly 90% of the cattle in the region. These devastating plagues, brought in with infected animals introduced from Eurasia, also killed many of the region’s buffaloes and other wild ruminants. At the same time, outbreaks of smallpox, another deadly alien disease, ravaged East Africa’s human populations. And then, on top of all this, between 1897 and 1899, the rains failed, causing a famine. In some areas, more than half of the human population may have perished as a result of these calamities, which the Maasai call the Emutai.

In the early decades of the 20th Century, then, the landscapes of the central Rift Valley (and other parts of Kenya) were remarkably devoid of both people and domestic livestock. This played into the hands of European settlers, who during the era of British colonial rule in East Africa were able to establish large privately-owned farms and ranches in the fertile lake-basins around Mount Eburu. It was the European settlers who introduced wheat and maize to the area, along with other exotic food-crops and alien plantation trees.

Labourers brought in by the European settlers to develop the new farms were mainly Africans of Bantu farming stock. During the Mau Mau Uprising of 1951 and the ensuing State of Emergency (1952–1960) imposed by the British Colonial Administration, these farm-hands, along with the white settler-farmers for whom they worked, were the targets of frequent raids on the Eburu area of the ‘White Highlands’ by members
of the Kikuyu-led Mau Mau Land and Freedom Army.

After Kenya’s Independence in 1963, most of this area’s European settler-farmers left the country. Many sold their farms to the Government under nationalisation schemes, such as those of the Agricultural Development Corporation (ADC). Other farms were sub-divided under Government land re-distribution programmes, and were used to settle Bantu farming communities from elsewhere in Kenya which had been displaced by the European settlers. The result was a massive influx of subsistence farmers.

Today, people representing a variety of ethnic groups and cultures can be found living side-by-side on the crowded farmlands and pastures surrounding Mount Eburu. The area’s farmers are mostly Kipsigis people of Kalenjin ethnicity and Kikuyu settlers from Kenya’s central highlands. Other cultivators include western Bantu settlers of both Kisii and Luhya origin. Maize, along with beans, sweet-potatoes, and other vegetables, are among the wide range of food-crops grown. Some pyrethrum is also cultivated. On larger holdings, such as those of the Government-managed ADC farmlands around Ndabibi, south-west of Eburu, wheat is now the dominant crop.

Several new villages and settlements have come into being. These include Kiambogo, Morop, and Ole Sirwa, to the north of the mountain; Songoloi to the north-east, near the old settlement of Eburru; Gathondia to the south-east; Centre One to the south-west, and Gachuma, west of the massif.

Maasai pastoralists still occupy some areas to the north and east of the mountain, but today their movement is increasingly restricted to the stony ‘badlands’ around Waterloo Ridge, north of the low-lying Ol Bonge volcanic cone – terrain dominated by superficial recent lava flows, making the area unsuitable for agriculture. The Maasai people of Eburu have long depended on the mountain as a reserve of dry-season grazing for their cattle.

Ogiek people, too, live in scattered groups around the mountain. Like the descendants of other forest-dwelling aboriginal hunter/gatherer groups around the world, the Ogiek are a marginalised people. Groups not overcome by, or assimilated into, other cultures have – as in Colonial times – been evicted from their old forest domains by successive national Governments. More recently, however, with encouragement from the growing number of global bodies dedicated to preserving disappearing indigenous cultures, the Ogiek have rallied together in demanding recognition of their rights as First Nationals.

Today, some of Eburu’s Ogiek people still trade in honey and in other items they collect from the forest – including herbal medicines.
UNTIL as recently as the 1930s, the Mau Eburu Forest was just the easternmost extremity of a vast, unbroken swathe of Afro-tropical upland forest extending west and north-west, along the Mau Escarpment and out across the immensity of the Mau Highlands west of the Rift Valley in Kenya, covering an area of more than 10,000 km².

Known as the Mau Forest, this immense watershed – by far the largest in East Africa – was (and, in places, still is) primarily a closed-canopy broad-leaf forest, interspersed with sclerophyllous trees (such as podocarps and junipers) and with thickets of bamboo, skirting high-altitude mosaics of open tussock-grassland and scrub.

Historically, this unbroken forest belt stretched as far west as the escarpments lining the floodplains of the Victoria-Nyanza Lake Basin, more than 120 km west and north-west of Mount Eburu. Here, the Mau Forest merged with other western highland forests, on the Nandi Escarpment and beyond.

The Mau Forest’s northern reaches, meanwhile, between the Uasin Gishu Plateau and that section of the Rift Valley’s western wall overlooking Lake Baringo, 150 km north of Mount Eburu, were contiguous with the Rift-escarpment forests of the Cherangani Hills, still further to the north.

This historical connection with the far broader forest ecosystems of Kenya’s Western Highlands sheds light on the remarkably diverse mix of fauna and flora that is to be found marooned today on isolated Mount Eburu.

The fragmentation of the greater Mau Forest began early in the 20th Century, and has continued unabated ever since. Now, in the 21st Century, less than one-third of this ‘super-forest’ still remains intact – in 22 fragmented blocks, collectively covering an area of some 3,200 km² (320,000 ha). Today’s patchwork of increasingly degraded forest remnants (see Map on facing page) is known as the Mau Forests Complex.

During the Colonial era in Kenya, large tracts of the forest were cleared by European settlers in then-British East Africa, who went on to establish private farms and ranches on the land. The Forest Department, meanwhile, set up under the Colonial Administration in 1902, annexed other parts of the natural forest as Government Land for use in meeting the spiralling timber needs of the fledgling Protectorate. To this end, ever larger expanses of the natural forest were replaced with monospecific plantation forests, of fast-growing exotic timber trees, such as cypresses and pines.

During the 1930s, several Government Forest Reserves were promulgated, on the Mau Highlands and in other parts of Kenya. The priority at the time lay in giving the country’s British Colonial Administration control over the exploitation of timber extracted from the forests, while also allowing for the continued expansion of managed plantation forestry.

By 1936, when the Eburu Forest Reserve was gazetted, Mount Eburu was surrounded by European-owned farms. Most of the forest on the mountain’s lower slopes had already been cleared. And the ten-kilometre-wide forested spur linking Mau Eburu with the other forests of the Mau Highlands too had been largely cleared, so turning Mau Eburu into the ecological island that it is today.

Several much larger tracts of the Mau Forest had by this time already been accorded Forest-Reserve status. Today, the largest of these Reserves – that of South-western Mau (originally spanning 95,356 ha when it was gazetted in 1932) – encompasses about 60,000 hectares of indigenous forest. So, in spanning just 8,715.3 ha, Mau Eburu is today among the smallest blocks of forest within the Mau Forests Complex.

Intensifying human population pressure over the decades following Kenya’s Independence in 1963, coupled with brazen land-grabbing and mismanagement, resulted in unprecedented forest destruction across the entire ecosystem of the Mau Forests Complex.

Slash-and-burn cultivation and settlement, uncontrolled logging, the effects of frequent fires, and the depredations of charcoal makers and of firewood cutters all took their toll. And the actions of venal, land-grabbing politicians, who for their...
own enrichment, or for use as patronage resources in the ‘buying’ of political favours, presided over wholesale de-gazettement excising huge chunks from Government forest land, resulted in further damage and loss.

These destructive practices were mirrored elsewhere in the country, with the alarming result that, by the 21st Century, the extent of natural forest cover left in Kenya as a whole had declined, from a high of perhaps 15 % of total land area, to the present level – of little more than 2 %. The country’s human population, meanwhile, had been continuing to grow rapidly, surging from fewer than 6-million people pre-1950 to more than 45-million today.

Pressures on the country’s remaining natural forests have further intensified as a result. The forests of the Mau Complex have been especially hard-hit. Continued forest loss here will have potentially calamitous socio-economic consequences, given how many millions of people – not just in Kenya, but in neighbouring states as well – depend on these forests for water, for ecosystem services, and as a bulwark in maintaining climatic stability.

In being the source of so many important rivers, the Mau Forests Complex as a whole is one of the most productive of Kenya’s five major ‘water towers’ (the others are Mount Kenya and the Aberdare Mountains, to the east of the Rift Valley, and Mount Elgon and the Cherangani Hills).

It is headstreams on the Mau which feed 13 great rivers – including the Mara, the Sondu, the Yala and the Nyando – that drain into Lake Victoria, placing the Forests Complex among the Sources of the Nile. Other streams are tributaries of rivers such as the Njoro, the Nderit, and the Makalia, which drain eastward into the Nakuru lake-basin; or which feed into the (Southern) Ewaso Ng’iro, draining south towards Lake Natron in Tanzania.

Annual rainfall over the Mau Complex varies, from 1,200–1,500 mm (47–59 inches) on average, over most areas, to in excess of 1,750 mm (69 inches) over some localities. This makes the Mau-Forest ecosystem as a whole one of the wettest regions in Kenya.

The wettest months – April and May, and November – correspond to the ‘long’ and ‘short’ rainy seasons experienced throughout East Africa in response to incoming south-easterly monsoon winds bearing moisture from the Indian Ocean. On the Mau, however, ‘continental’ rains, shed by moisture-bearing clouds blowing in from over Lake Victoria, account for a significant proportion of this rainfall, while also producing regular showers at other times of the year – between the months of June and October.

Downstream populations, of people and animals alike, have long depended on these perennial rivers for a year-round supply of water – whether for drinking, or for sustaining productive floodplain pastures and farmlands on which to raise livestock and to grow crops. World-famous wildlife havens, too, such as the Mara–Serengeti, and the thriving tourism industries which they support, depend on water from the Mau Forests Complex.

Now, under the ambitious goals set out in Kenya’s Vision 2030 national development agenda, the importance of preserving natural ‘water-tower’ forests is recognised as one of the mainsprings for long-term social and economic betterment. The preservation of forests in the Mau Complex, especially, ranks among the biggest challenges now facing the country.

In this context, the conservation measures now in place to preserve the Mau Eburu Forest – the focus of this guidebook – may be seen as a critical first step.
‘Island’ Mau Eburu

The Mau Eburu Forest we are left with today is just an isolated, outlying fragment of the historically vast Mau Forest ecosystem of Kenya’s Western Highlands. Its surviving upper reaches lie within the Eburu Forest Reserve – established in 1936, and spanning an area of 8,715.3 hectares. In ecological terms, the Eburu Forest Reserve, hemmed in from all sides by farmlands and human settlements, is now an island.

The biological diversity preserved within this isolated forest, though, is extraordinarily rich. Here, among the native forest flora, are important trees of threatened species, such as Prunus africana, and of other species – including Juniperus procera (‘East African Pencil Cedar’) – which in Africa are now rare outside Protected Areas.

Mammals of more than 60 species are known to occur in the forest, including a relict population of the critically endangered Mountain Bongo, Tragelaphus euryceros isaaci – an antelope subspecies whose entire remaining wild population, now confined wholly to Kenya, is believed to number fewer than 120 animals (Separate Article, p. 26).

The isolated forest is also recognised as being the single most important ‘hotspot’ for birdlife on the Mau Highlands. As such, the forest provides a refuge and a breeding-ground for such imperilled forest species as the Crowned Eagle, Stephanoaëtus coronatus – the most thickset and powerful of all African birds of prey.

The survival here of these and other threatened species has been made possible by the rugged and uncompromising nature of some of the terrain. Parts of the Mau Eburu Forest are nestled within deep valleys, so precipitous in places as to make access by people difficult. Spectacular waterfalls, fed by seeping springs, tumble from sheer cliffs which form steps within the valleys, riddled with dank caves and crevices inhabited by colonies of roosting bats. Cyathea tree-ferns form thickets on the banks of cold mountain streams, beneath steep, thickly-forested ridges topped with towering Juniperus procera trees and with dense stands of African Mountain Bamboo, Oldeania (formerly Arundinaria/Yushania) alpina.

Here, on the ridges and in the deep, secluded gorges, there are some magnificent old forest trees, of species that include Podocarpus milanjianus (formerly P. latifolius), also known as ‘Podo’ or as ‘Yellow-wood’ (Muthengera in Kikuyu); Nuxia congesta (‘Brittle-wood’ or Mucurui); Olea capensis ssp. macrocarpa (‘East African Olive’, Mucarage); Dombeya torrida (formerly D. goetzei, known as ‘Forest Dombeya’, or Mukeu), and Allophylus abyssinicus (Mucami) – as well as Prunus africana (‘African Cherry’ or ‘Red Stinkwood’, Muiri). Elsewhere, in the more accessible, lower-lying reaches of the forest, trees of these and of other species, sought-after for their valuable timber, have long since been removed.

Mount Eburu’s rugged topography, then, has ensured that – in contrast to some of the other, smaller ‘satellite’ forests of the Mau Complex – a significant portion of the original Mau Eburu Forest has remained intact and is still largely unspoiled.

Until recently, there were fears that Mau Eburu, in its isolation, might have become too degraded and too heavily poached a habitat to support forest-adapted large mammals such as the Mountain Bongo – which had not been recorded here formally since Colonial times. Indeed, news of there being a surviving Mau-Eburu Mountain Bongo population, verified in 2005, came as a genuine and welcome surprise to many in wildlife conservation circles.

The Mountain Bongo’s presence in the forest, alongside other forest-dependent large mammals, including the Giant Forest Hog, Hylochoerus meinertzhageni, is indicative of a remnant forest ecosystem which, despite the depredations over recent decades of loggers, charcoal makers, firewood collectors, and bush-meat hunters, and despite the ravages of recurrent wild fires, and of persistent grazing/browsing pressure from domestic livestock herds, is in places still in surprisingly good shape.

In having long been an integral part of the Mau Forest ecosystem of Kenya’s Western Highlands, Mau Eburu has, even today as an island, retained some characteristic ‘western’ affinities, which set...
it apart from forests located east of the Great Rift Valley. For animals of some species which, over the millennia, have dispersed eastward from the rainforests of Central Africa, or for others which have moved inland from the east, the Rift Valley, with its savannahs and open woodlands and lakes, has proved an unbridgeable void, acting as a natural distribution divide. In the wild, then, animals of some forest taxa occur only to the west of the Rift, while others are found only to the east.

This is especially true of some arboreal forest specialists which (in the case of certain primates) require a continuous canopy through which to disperse. The same goes for some terrestrial forest specialists (certain duikers, for example) which can establish territories only under closed forest. Slow-moving forest animals (some reptiles, in particular) have been similarly constrained – as have some amphibians and other animals which, out in the open, are susceptible to desiccation.

Of the larger mammals, one obvious western form that is marooned today on island Mau Eburu is the common diurnal primate, the Blue Monkey, *Cercopithecus mitis stublmanni*, a distant relative of the Syke’s Monkeys, *C. m. albogularis*, which occur only in forests east of the Rift Valley.

Primates of another western form occur in the Mau Eburu Forest. These are Guereza (Black-and-White) Colobus Monkeys, *Colobus guereza*, of the Central African (Lowland) form that in Kenya occurs only west of the Rift Valley. These monkeys differ from their East African (Highland) counterparts in upland forests east of the Rift, in having thin black tails tipped with mops of white fur (as opposed to bushy, all-white tails).

Populations of animals of some other western species that were marooned on island Mau Eburu may not have survived, however. The Yellow-backed Duiker, *Cephalophus silvicultor*, is one such animal. Although present historically, there have been no (known) sightings of this large forest duiker with a dorsal patch of pale, cream-coloured hair, since the 1960s. Forest duikers of other western species, including the Blue Duiker, *C. monticola*, and the Black-fronted Duiker, *C. nigrifrons*, both reputedly found here once, may also have been extirpated.

Closer monitoring of this hitherto neglected forest may yet spring some surprises. It is the Mau Forest that in 1946 produced the only two specimen skins known from anywhere in Kenya of that most elusive and enigmatic of all forest species, the African Golden Cat, *Caracal* (formerly *Profelis*) *aurata*. Conceivably then, even this most secretive of felines may still be lurking, unheralded, within the Mau Eburu Forest.

For marooned wild animals with very small populations, isolation on biogeographic islands like Mau Eburu, from which they cannot disperse, brings with it the danger of in-breeding, which may result in a genetic ‘bottle-neck’ – a kind of dead-end in itself. Indeed, this has been identified as one of the most pressing constraints facing the beleaguered Mountain Bongo, both here on Mau Eburu and in other isolated forests where the subspecies occurs.

As a refuge for highland forest birds, Mau Eburu has, within the context of the broader Mau-Complex ecosystem, been singled out as a habitat of particular importance.

A two-year field study, completed in 2009, saw a team of scientists from the National Museums of Kenya assess relative biological diversity for
all major taxa across the entire spectrum of the Mau Forests Complex, with a view to identifying ‘Biodiversity Hotspots’ – species-rich areas, that is, of high conservation priority. From this study, the Mau Eburu Forest emerged as the Mau ecosystem’s single most important hotspot for birdlife.

The Mau Forests have never been centres of endemism, so all the birds frequenting the Mau Eburu Forest also occur in upland forests elsewhere in Kenya. The presence, though, of some species that are either western or predominantly western in their distribution gives Mau Eburu an interesting, eclectic ‘mix’ of highland forest birds.

Some Mau Eburu Forest ‘specials’ – such as the Yellow-billed Barbet, *Trachylaemus purpuratus*, and the Black-billed Weaver, *Ploceus melanogaster*, both inhabitants of the scrubby secondary-growth vegetation skirting the forest – are species that in Kenya are typical of forest-edge habitats west of the Rift Valley.

Relative to other forests where such western species can be seen, Mau Eburu has the advantage of being readily accessible to visitors from Nairobi. In being so close to Lake Naivasha, where a choice of comfortable accommodation is available, and where guides are easily engaged, the forest has become a popular birding destination (*Separate article, p. 46*). And to date, birds of more than 180 species have been recorded in the Mau Eburu Forest and its immediate environs.

For want of close scientific scrutiny, the fauna of the Mau Eburu Forest remains poorly documented, however. Not much is known, for example, about the composition of the forest’s herpetofauna (its amphibians and reptiles), or about that of either its invertebrate fauna or its smaller mammals (the smaller rodents, especially, along with the bats and the shrews).

In Part Two of this *Visitors’ Guide*, under the banner of *The Living Forest*, the ecology of Mau Eburu is explored in greater detail, based on what is known about the flora and the fauna of the forest, and about how the many different organisms here interact in creating a vibrant and priceless haven for biological diversity.
The Mau Eburu Fence

The Mau Eburu Forest Reserve is today better protected than ever before. An electrified conservation fence, 43.3 kilometres long, defines the Reserve’s entire gazetted perimeter. Completed in 2014, this fence is the basis for a multi-faceted conservation strategy, now in place to safeguard the many vital functions the forest performs – as a water catchment, in delivering invaluable ecosystem services, and as a store of priceless biological diversity.

By keeping out illegal loggers and charcoal makers, the Eburu Fence has been instrumental in protecting mature forest trees in the Reserve. The exclusion of such activities, as well as those of firewood collectors and bush-meat hunters, has also seen a marked decline in the incidence of wild fires – previously the cause of severe habitat loss and degradation. And this in turn has created the conditions under which previously despoiled areas of the forest can regenerate – and recover.

Since the Mau Eburu Fence has been in place, people living in settled areas around the Reserve have reported a welcome decline in human–wildlife conflict, now that many of the area’s buffaloes, Bush Pigs, Olive Baboons, and other crop-raiding wild animals are confined to the Reserve. This has resulted in improved crop yields and in safer living conditions.

Sustainable land-use practices based on tree-planting and ‘home forestry’, meanwhile, are being adopted in the settled areas around the Reserve, where more and more farmers are growing fuel-wood in managed lots of their own, of fast-growing exotic trees. This is alleviating the pressure on the natural forest within the Reserve, while reducing the amounts of time and effort that families in forest-adjacent areas need to expend in gathering wood.

As a management tool, the fence has proved decisive in limiting unauthorised access to the forest. Now, with access limited to official gates only, the Kenya Forest Service’s Mau Eburu management team can control and monitor human traffic into, and out of, the Reserve. Admittance fees, collected at these gates, from authorised forest-users and from visitors to the forest, have boosted revenues – by as much as 600% during the first year alone since the fence’s construction.

These are just some of the immediate outcomes of the Mau Eburu Fence Project. The fence, though, far from being an end in itself, is but one aspect of a broader, long-term private/public-sector partnership and conservation commitment aimed at creating a stable and productive environment, with tangible benefits for the many thousands of local people whose lives and livelihoods depend on the health of the fragile Mau Eburu ecosystem.

To this end, the focus now is on providing opportunities and training for people in the forest-adjacent communities, giving them the skills to engage in non-destructive income-generating activities – including profitable bio-enterprises such as bee-keeping for honey production. The success of such enterprises is critical in weaning people of a dependence on unsustainable, consumptive uses of forest resources.

Alternative energy-efficient fuel sources for cooking and domestic heating are now in common use among the forest-adjacent communities. Since 2013, domestic charcoal-making stoves (or jikos), have become increasingly popular among local families, following the holding of community training workshops on how to use the jikos.
With the jikos, local households can produce charcoal from feedstock that is freely available on farms, such as pruned tree-branches and dried maize cobs. Use of the jikos, by ensuring that people are no longer wholly reliant on the forest as a source of firewood and charcoal for all their domestic energy needs, is considerably easing the pressure on the natural forest.

The rehabilitation of degraded areas within the Mau Eburu Forest Reserve is another long-term priority. And to this end, indigenous trees are being re-planted and cared for, in participatory forest-management programmes involving people from the local communities. The need for conservation awareness is also being addressed, through education packages that have been incorporated into the curricula of local schools.

Community water projects – engineered to protect springs at source, and to ensure that the water can be stored and dispensed efficiently, without wastage or fouling – are further improving living conditions for local people.

Closer monitoring in areas of mature forest, meanwhile, is being achieved through the work of the Bongo Surveillance Project. The critically endangered Mountain Bongo, *Tragelaphus euryceros isaaci*, because it is a forest specialist, is an excellent bio-indicator ‘flagship’ for the health of the Mau Eburu ecosystem as a whole. So a conservation focus on this threatened antelope subspecies is benefiting countless other forest taxa – of plants, as well as of other representatives of the forest fauna.

Wild animals outside the Reserve, and their continued co-existence with people on the foothills of Mount Eburu and across the wider Mau Eburu ecosystem, are another focus of the conservation effort. Safe ‘corridors’ are being established, for example, along dispersal routes historically plied by wild animals moving back and forth between the foothills and the Naivasha lakeshore. Management of these dispersal corridors is geared to ensuring that human–wildlife conflict on surrounding farms and rangelands can be minimised.

Mau Eburu’s potential as a safe and rewarding destination for visiting birdwatchers and hiking parties has yet to be fully exploited. So there is
every chance that, as the forest becomes better known, it may attract more visitors, which in turn may lead to the creation of further employment opportunities for local people – as forest guides and tour operators. In showcasing some of the forest’s principal attractions, this Visitors’ Guide is yet another component of the long-term Mau Eburu conservation effort.

Construction of the Mau Eburu Conservation Fence began in 2013, at a time when the future of the Mau Eburu Forest Reserve was in jeopardy. Plunder of the forest’s resources had increased dramatically during the 1990s, with the sudden and rapid proliferation, around Lake Naivasha, of intensive export-driven horticulture and floriculture enterprises. The mass-influx of workers (and of their families and dependents) led to a mushrooming of new settlements – creating unprecedented high levels of demand for charcoal, firewood, timber, bush meat, and other ‘forest products’.

Eager to exploit this soaring demand, vendors came flocking in, along with profiteers bent on stripping the forest of its resources. The then-Forest Department – under-staffed, under-resourced, and demoralised – was powerless to intervene. And Mau Eburu became synonymous with a booming illegal charcoal trade, serving not just the Naivasha area, but increasingly markets in other parts of Kenya as well.

Tensions arose between those in forest-adjacent local communities and the well-heeled outsiders who were running the charcoal and the logging rackets. The large-scale plunder, though, continued, and in June 2007 the Mau Eburu Forest was shown – on television and in photographs published in the newspapers – burning uncontrollably for weeks on end.

The alarming disclosures that ensued, revealing a litany of illegal acts of destruction and wanton abuse in the forest, came as a wake-up call – both for the Kenya Government and for those in the conservation community.

In 2010, the Kenya Forest Service – the revamped Government agency which had been set up in 2005 to replace the old and outmoded Kenya Forest Department – joined forces with the Rhino Ark Kenya Charitable Trust and with other agencies, public and private, in seeking ways, first of salvaging, and then of restoring, the Mau Eburu Forest.

By this time, Rhino Ark’s 400-kilometre-long protective fence around the Aberdare National Park and Conservation Area had been completed. Construction of that fence – the longest ever built for conservation – had taken more than 20 years (1988–2009). Over this period, according to the findings of an independent study, first published in 2011, the livelihoods of millions of people in central Kenya improved in many ways.

The study documented a 20.6 % increase in forest cover within the Conservation Area between 2005 and 2010. Evidence of persistent degradation in previously despoiled areas of the natural forest, meanwhile, was found to have declined by 54 %. And over the same period, the extent of exotic plantation-forest cover in settled areas outside the fence was found to have increased by 47 %.

Buoyed by these encouraging findings, Rhino Ark and its public- and private-sector partners wasted no time in extending the scope of their operations to include long-term commitments to conserving other threatened ‘water-tower’ forests in Kenya – including the Mau Eburu Forest.

In 2011, the first in a series of exhaustive Mau Eburu stakeholder meetings got under way. At these meetings, the proposed Mau Eburu Fence Project and its implications were explained
at length to community leaders, farmers, local residents, and forest-user groups. The response was overwhelmingly positive. After years of seeing ‘their’ forest ravaged by outsiders who did not have to live with the consequences of the destruction, Mau Eburu’s local communities felt a strong sense of restored ownership.

Following this consultative process, fence-alignment surveys were carried out along the length of the gazetted Forest Reserve boundary. A comprehensive Environmental Impact Assessment was then conducted in 2012. Again, submissions were elicited from representatives of all forest-adjacent communities and interest-groups. In March 2013, after Kenya’s National Environment Management Authority (NEMA) had approved the project, work on the construction of the Mau Eburu Fence commenced in earnest.

The fencing was carried out by an experienced team from the Kenya Wildlife Service, using labour sourced from the forest-adjacent local communities. Above ground, the fence is 2.1 metres (seven feet) high. Below ground, it is mesh-wired to a depth of one metre (so as to block the passage of burrowing animals). The entire fence line is electrified, having three ‘energiser houses’ at strategic points to power up the different sections.

From the outset, the Mau Eburu Fence Project elicited keen interest and support from Kenya’s corporate sector. The M-PESA Foundation came up with the bulk of the project’s funding. This support, coupled with backing from Finlays (now Flamingo) Horticulture and from partner agencies in the Kenya Government, was to prove crucial in enabling Rhino Ark to get the project started.

Additional funding has been raised through the Rhino Charge – the hugely popular off-road motoring event staged each year by Rhino Ark to raise money for the conservation of ‘water-tower’ forests in Kenya. Since its inception in 1989, this event – originally devised in order to raise the funds needed for the construction of the Aberdare Conservation Fence – has generated in excess of KSh 1,200-million (about US$ 12.4-million).

The 2016 Rhino Charge alone raised more than KSh 139-million (US$ 1.4-million). Some of this money is being used to fund the community conservation programmes that Rhino Ark and its partner organisations have established in the Mau Eburu area, now that the Conservation Fence is in place. Disbursements from the proceeds of future Rhino Charge events will enable these long-term conservation programmes to continue.
THE STORY OF MAU EBURU

Courtesy: BONGO SURVEILLANCE PROJECT

Courtesy: INTERNATIONAL BONGO FOUNDATION
NOW found only in Kenya, the Mountain (or Eastern) Bongo, Tragelaphus euryceros isaaci, is one of two subspecies of the Bongo Antelope, T. euryceros. The other race, the Lowland (or Western) Bongo, T. e. euryceros, is widespread by comparison, occurring in forests across much of Central and West Africa.

Listed as Critically Endangered, the Mountain Bongo’s entire wild population – thought to number fewer than 120 animals – is restricted to just a few upland forests, on the Aberdare Mountains, Mount Kenya, the Mau Escarpment, and Mau Eburu. The Mau Eburu cluster, of between 10 and 15 animals, may represent more than 10 % of the wild population as a whole.

The Mountain Bongo depends on a healthy and undisturbed forest environment. As a forest specialist, it is an excellent bio-indicator or ‘flagship’ for gauging the health of the forest ecosystems in which it lives. So, if the Mau Eburu antelopes can be protected, then countless other forest taxa – of plants, as well as other representatives of the forest fauna – stand to benefit from a conservation focus on preserving the Mountain Bongo population.

Over much of its once-extensive former range in Kenya, the Mountain Bongo is now locally extinct. Its habitats once included upland forests on both the Cherangani Hills and the Nandi Escarpment, as well as along the breadth of the Mau Highlands. The Mountain Bongo’s plight, in being inextricably bound up with forest fragmentation, and with forest loss and degradation, makes it the perfect emblem and barometer for the preservation of what precious forest cover remains.

Adult Mountain Bongos are both larger and much heavier than their Lowland counterparts. Adult males, standing 1.2 metres (almost four feet) at the shoulder and measuring 2.6 metres (about eight and a half feet) from nose to tail-tip, may weigh more than 375 kg (825 pounds). This makes the Mountain Bongo the largest and the heaviest of all forest antelopes.

Hunched rather than flat-backed in profile, the Mountain Bongo – with bright chestnut hair (darkening with age in male animals), and with 11 to 14 striking vertical white stripes disposed down the shoulders, flanks and hindquarters – is one of the most richly coloured and handsome of all antelopes. The animals’ large, flared ears make for excellent hearing.

Exceedingly shy and elusive, Mountain Bongos are forest browsers exclusively, being restricted to densely forested habitats, where accessible understorey leaves and shoots are plentiful year-round. They are also fond of decaying wood. Females usually stick together in small groups frequenting circumscribed home ranges encompassing perhaps one or two thickly forested mountain ridges. Older males often lead a wandering and largely solitary existence.

The extreme nature of the Mountain Bongo’s preferred habitat – impenetrable upland forest and bamboo astride precariously steep and inaccessible ravines gouged by mountain streams – makes a mockery of conventional tracking and monitoring techniques. So the figures arrived at by way of estimating Mountain Bongo numbers are, at best, the product of educated guesswork based on extrapolations from the animals’ dung and spoor, as well as (nowadays) on remote camera surveillance images and on the findings of DNA analysis of collected hair and faecal samples.

As a subspecies distinct from its Lowland counterpart, the Mountain Bongo eluded scientific notice until 1902, when a specimen – collected in the Mau Forest near Eldama Ravine by FW Isaacs (hence the sub-specific epithet isaaci) – provided the basis for the race’s formal description, by scientists at London’s Natural History Museum.

Like buffaloes and other wild ruminants, Bongos are susceptible to diseases afflicting cattle, such as rinderpest. Outbreaks of such diseases, coupled with the ravages of habitat loss and indiscriminate bush-meat hunting by people using snares or pit-traps, or packs of dogs, led to the
eradication of the Mountain Bongo from much of its historical range.

On the Aberdare Mountains, home today to most remaining Mountain Bongos, these threats were compounded by a surge in the population of Lions, some of which had been introduced from Laikipia in the 1970s. When the Aberdare Lion population peaked in the 1990s, reported sightings there of Bongos ceased – sparking fears that the antelope’s core Aberdare population might have been wiped out by the Lions.

Three major conservation interventions were to follow, which ultimately may prove pivotal in saving the Mountain Bongo from extinction.

First, between 1989 and 1991, the initial section of the Kenya Wildlife Service/Rhino Ark conservation fence, skirting The Salient (the eastern ‘tongue’ of the Aberdare National Park), was constructed. As a deterrent to would-be bush-meat poachers, charcoal producers and logging gangs, while at the same time keeping wild animals out of neighbouring farmlands, this fence proved so effective that it was subsequently extended around the whole of the Aberdare National Park and Conservation Area.

Over time, as the fence’s conservation benefits became apparent, there was a marked recovery in some of the Mountain Bongo’s prime remaining natural habitat.

A second decisive intervention took the form of a dramatic reduction in Lion numbers on the Aberdares. This was achieved through a series of culling operations carried out in the 1990s by a specialist task force headed by the Kenya Wildlife Service’s then-Problem Animal Control Unit.

A third telling development came with the founding, in 2003, of the Bongo Surveillance Project (BSP) – an operation set up to ascertain the Mountain Bongo’s conservation status through finding and monitoring surviving groups, and plotting strategies for the subspecies’ protection.

Since 2003, BSP field patrols have succeeded, in the forests of Mount Kenya, the Mau Complex, and Mau Eburu, as well as of the Aberdares, in locating no fewer than 11 small groups of Mountain
Bongos, amounting to about 100 animals in all. The hope now, as the BSP searches continue, is that other groups might yet be found.

The Bongo field patrols are a combined effort, involving rangers from the Kenya Wildlife Service and the Kenya Forest Service, and skilled trackers and scouts from forest-adjacent local communities. Funding and logistical support comes from various conservation bodies, including Rhino Ark. Not only have the patrols removed hundreds of snares and traps from the forest; they have also collected dung and hair samples for DNA analysis. Remote camera ‘traps’ and advanced GPS devices supplied by project donors have proved invaluable as monitoring aids. The wealth of scientific data gathered so far has greatly enhanced our understanding of Mountain Bongo ecology, while shedding light on the subspecies’ genetic diversity.

Worrying evidence has emerged of in-breeding, which may result in a genetic ‘bottle-neck’ – always a danger with populations that are very small and isolated. Of all the DNA samples screened to date, only two haplotypes have been identified (compared with 23 for Waterbuck samples collected from the same areas). This suggests that all of the remaining wild Mountain Bongos may be descended from just two maternal lineages.

To address this problem, some descendants of the captured Mountain Bongos which had been exported to zoos in the US in the 1960s and 1970s have been repatriated, and are being re-introduced into their ancestral habitats in Kenya.

The Mountain Bongo, then, while still far from secure in the wild, is being given every chance to bounce back from the brink of extinction. Conservation gains registered through projects associated with the KWS/Rhino Ark fence around the Aberdare National Park and Conservation Area are being replicated on Mount Eburu, now that the Mau Eburu fence is in place. And the Mount Kenya perimeter fence, under construction at present, is expected to deliver further gains.

Through the work of the Bongo Surveillance Project, meanwhile, conservation of the Mountain Bongo and of its habitats has become the focus of unprecedented public interest and concern. BSP education and awareness programmes set up among local communities, along with the activities of the Bongo Wildlife Clubs now established in local schools, are critical aspects of the continuing conservation effort.

As the living symbol of the health and well-being of the mountain forest ecosystems on which we all depend for our own health and well-being, the Mountain Bongo is today widely recognised as a crucial conservation focus in the effort to preserve, for the benefit of all, some of Kenya’s most important upland forests.
VARIOUS habitats, defined by distinctive plant communities, are found within the Mau Eburu Forest Reserve. Some of these habitats, in the upper central portion of the Reserve, take the form of closed-canopy upland forest. Here, the make-up of the forest vegetation is determined primarily by altitude and by local variations in the amount and the frequency of rainfall. Other factors, such as gradient, drainage, and soil depth and composition, also play a part.

In places, recurrent forest fires have been another major influence – as have a broad range of human activities, including logging and charcoal making, firewood harvesting, and livestock grazing. Mau Eburu’s lower foot-slopes, now largely denuded of their original forest cover, are characterised by open woodland and by secondary bushland vegetation and scrub – replete with hardy, colonising plants, including several invasive species.

To date, plants of 326 species, from 87 families, have been recorded in the Mau Eburu Forest. Dominant, in the upper reaches of the natural forest, at altitudes above 2,500 m (8,350 ft), are mixed stands of African Mountain Bamboo, *Oldeania* (formerly *Arundinaria* alpina), and of the tall-growing conifer *Podocarpus milanjianus* (*Muthengera* in Kikuyu), also known as ‘East African Yellow-wood’ or ‘Podo’. Podocarps are primitive plants which have been around since the time of Gondwanaland, the ancient super-continent that broke up 150–50-million years ago. Individual trees may live for hundreds of years, reaching heights of over 20 metres and attaining impressive trunk-girths.

Podocarps are dioecious, meaning their cones, male and female, are borne on separate trees. The male cones, small and pendulous, resemble catkins. The wind-pollinated female cones produce round grey-blue seeds atop fleshy receptacles that turn purple-red on maturing. Fruit bats, which discard the seeds after carrying off and devouring the juicy receptacles, are the prime agents of dispersal. The ripe receptacles are also eaten by turacos, pigeons, and hornbills, and by various animals, including monkeys and galagos. Bush Pigs, rodents, and other terrestrial animals eat the fallen receptacles.

Also conspicuous in places, towering above the ridge-tops of Mau Eburu, are stands of magnificent old *Juniperus procera* (*Mutarakwa* or ‘African Pencil Cedar’) trees. Africa’s sole representative in the genus *Juniperus*, trees of this species are the tallest-growing of all Junipers, reaching heights of over 40 metres. Often found growing in association with Podocarps, these huge, towering conifers are characteristic of high mountain forests throughout eastern Africa. Old trees, prized for their durable, termite-resistant timber, are now scarce outside protected areas. On some mountains (including Mau Eburu), frequent forest fires have prevented the species from regenerating.

Common, on open, rocky ground between Junipers, is the low, woody shrub *Myrsine africana* (*Mugaita* or ‘African Myrtle’). Burned areas, in particular, have been colonised by this hardy shrub, which in places forms dense clumps. On exposed ridge-tops, Giant Heather (*Erica arborea*) forms the dominant ground-cover. Shrubs and small trees of the ‘St. John’s Wort’ *Hypericum revolutum* (or *Sasumua*), bearing starry yellow flowers, are also prominent in some areas.

The ‘Everlasting Flowers’ of *Helichrysum* species are conspicuous in some clearings, amid herbaceous cover dominated by clump-forming *Alchemilla* (‘Lady’s Mantle’). The white flower-heads of the prickly, thistle-like species *Carduus nyassanus* ssp. *kikuyorum* may also be conspicuous. And *Lobelia bolstii*, when its delicate mauve flowers are out, is often prominent in the herbaceous layer.

African Mountain Bamboo grows most profusely around Mount Eburu’s wetter, Eastern summit. Here, above the settlement of Eburru,

This account is based on a report documenting the findings of a Preliminary Vegetation Survey of the Eburu Forest Reserve, carried out in March 2002 by WRQ Luke and PA Luke for the Kenya Forests Working Group. The account has been expanded with reference to the current (2016) Plant Checklist for Eburu Forest Reserve, compiled by Luke WRQ, Hoeft M, and Ndeche. WRQ Luke has been kind enough to review the information on plants in this Visitors’ Guide.
large tracts of the bamboo forest have been cleared by local people who use the culms of this giant grass as a building material. Many of the older Junipers and Podocarps have also been removed from this part of the Bamboo Zone.

Some old Podocarps remain, however, together with tall, open-canopy stands of *Nuxia congesta* (*Mucurui* or ‘Brittle-wood’) – gnarled trees which produce very dense (i.e. congested) terminal heads of fragrant, creamy-white flowers, attractive to butterflies, bees, and other insects. Trees of this species occur throughout the Mau Eburu Forest, particularly on rocky slopes and ridge-tops.

Also found, here in the mixed-Bamboo Zone, are a few scattered trees of the species *Chrysophyllum viridifolium* (*Murundu* or ‘Fluted Milkwood’). These are tall, statuesque trees with mottled grey-brown trunks and slender branches, supporting massive crowns. Like many other members of their plant family, the Sapotaceae, they exude a milky latex on being cut. *Pittosporum abyssinicum* (*Munyamati*) is another of the trees found here, above the closed-canopy forest. Pittosporum seeds, embedded in dark, woody capsules that split open on the trees, are bright red and coated in sticky, aromatic resin.

It is further west, on the plummeting ridges and in the deep valleys of the saddle-area between the two summits, that Mau Eburu’s magnificent closed-canopy forest comes into its own. This Central Forest Zone, in the altitude range of 2,250–2,520 m (7,500–8,400 ft) above sea level, remains largely undisturbed. Indeed, in places it is almost pristine.

Trees forming the upper storey include both *Podocarpus milanjianus* and *Nuxia congesta*, as well as *Allophylus abyssinicus* (*Mucami*) – a species sometimes referred to as ‘Forest Velvet’, owing to the velvety appearance of its rust-coloured branchlets. This species is also known as ‘False-Currant’, on account of its seasonally abundant clusters of red-black fruits. The trifoliolate leaves make saplings hard to tell apart from under-storey shrubs in the genus *Searsia* (previously *Rhus*; *Muthigitu*), also common in this part of the forest. The pale, fluted boles of mature *Allophylus* trees are conspicuous, rising 20 metres or higher above the forest floor.

Another prominent tree of the upper storey is *Polycistas kikuyuensis*, known as *Mutati*, or ‘Parasol Tree’. The narrow crowns of this high-branaching species, protruding above the canopy atop sheer, straight boles, give the trees a spiked,
umbrella-like profile. Elsewhere in the Mau Eburu Forest, as in many other upland forests in Kenya, mature trees of this species have been harvested extensively for the manufacture of plywood.

The upper central reaches of the Mau Eburu Forest provide a crucial refuge for trees of the threatened species *Prunus africana* (*Muiri*; otherwise known as ‘African Cherry’ or as ‘Red Stinkwood’). The fissured bark of these trees – dark in hue, rough, and scaling – has long been harvested in Africa for use in traditional medicine, as a cure for a wide range of ailments. Scientific tests, carried out in the 1970s, corroborated the efficacy of the extract Pygeum, derived from the bark, in treating prostate disorders in older men, principally the condition known as benign prostatic hyperplasia.

This discovery spawned a huge global demand for the bark, which has been collected on a massive scale ever since, for export to rich countries around the world. In the process, mature *Prunus africana* trees all over Africa have been ring-barked and killed, consigning the species, over much of its natural range, to the brink of local extinction in the wild.

Today, *Prunus africana* is listed under Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which provides for licensed trade only, in bark and in other products derived from the trees. In many of the countries which are party to CITES, trade in *Prunus africana* has proved difficult to control, however – with the result that the species is now gravely threatened.

On Mau Eburu, there are some fine examples of unmolested old *Prunus africana* trees, some rising 25 metres, or higher, above the forest floor. These beautiful trees, with their heavy, drooping foliage of dark green, shiny leaves, produce dry, reddish bi-lobed fruits which, although extremely bitter, are consumed by fruit bats (which disperse the seeds) and by other mammals, including monkeys – as well as by birds of various species. The presence, in the forest’s upper reaches, of numerous *Prunus* saplings indicates that, here at least, the species seems to be regenerating well.

Prominent, on exposed rock-cliffs in the forest, are trees of the species *Rapanea melanophloeos* (*Mugaita*, or ‘African Beech’). Typically, the long straight boles of these trees, some over 20 metres tall, support dense, compact crowns on high-forking branches with maroon-tinged outer twigs and leaves. Turacos and other fructivorous birds are especially fond of the tiny fruits, purple when ripe, which appear massed along the outer branchlets, beneath the leaves.

In the valleys, one of the more common larger trees is *Dombeya torrida* (*Mukeu*, previously *D. goetzianii*, ‘Forest Dombeya’). These spreading trees, with their heavy foliage of very large, heart-shaped leaves, felty and dark green, bear clusters of sweetly-scented reddish-pink or pink-and-white flowers. Regenerating leafy shrubs of this species are abundant on Mount Eburu, even in disturbed forest-edge habitats impacted by fires or by grazing or browsing pressure.

In parts of the forest, trees of the more widely represented genera (*Podocarpus, Nuxia, Allophylus, Dombeya*) are joined by trees of many other species. The crowns of the taller trees overlap to form an unbroken canopy through which very little
sunlight can penetrate. Trunks and branches in the shaded under-canopy provide niches for epiphytes of various species, including the orchid *Aerangis thomsonii*, which produces spectacular, cascading inflorescences of white flowers with long, tubular spurs. Orchids of another species, *Polystachya campyloglossa*, which bears terminal clusters of small white flowers, lightly flecked with red, may be encountered closer to the ground, or even among shaded rocky outcrops on the forest floor. In all, orchids of no fewer than 12 species have been recorded in the Mau Eburu Forest.

Undergrowth in the forest varies in composition and density, depending on how much light is able to penetrate the canopy. In places where the canopy is almost entirely closed, admitting little light, grasses cannot flourish, and the undergrowth is sparse. Here, ferns of several genera – including *Asplenium* (‘Spleenworts’), *Adiantum* (‘Maidenhair Ferns’), and *Pteris* (‘Brake Ferns’) – are common, either in the dank leaf-litter or nestled among rocks, along seepage channels especially.

Beneath gaps in the canopy, herbs and shrubs are able to prosper in the dappled light reaching the forest floor. Here, leafy beds of the bristly, trailing herb *Desmodium repandum*, sporting vivid orange-red flowers, are often apparent – as are Balsams of various species, which may include both *Impatiens meruensis* (the most common form, bearing mauve-pink flowers) and in wetter areas *I. tinctoria* (which produces white flowers with stippled burgundy-red centres and inner veins).

The tangled vines of woody lianas, rising into gaps in the canopy, festoon the boughs of many of the forest trees. Particularly common are lianas of the species *Urera hypselodendron* – a climber belonging to the Nettle family, the Urticaceae.

Shrubs grow most profusely in parts of the forest where the canopy is relatively open. In clearings especially, created by tree-falls or by selective logging, young trees compete vigorously with a welter of shrubs – forming dense, tangled thickets, covered in climbers and straggling creepers. These thickets, in turn, provide shelter and refuge for animals of many species.

Common, in some clearings, are shrubs of *Psy-chotria* spp. (the ‘Bird Berries’), along with *Searsia* (formerly *Rhus ruspilii* (Muthigita) and *Piper capense* (or ‘Wild Pepper’). The giant rosette-plant *Lobelia gibberosa* (Mubebe), which produces huge, erect flower-spikes, may also be conspicuous, around the edges of shrubby forest clearings. Here, strong climbers may include *Cyphostemma kilimandscharicum*, *Clematis simensis*, and *Senecio syringifolius*, as well as the prickly scrambling shrubs of either *Rubus steudneri* (which bears pink flowers) or *Rubus pinnatus* (white flowers). The edible fruits of *Rubus* (or *Mutare*) resemble those of brambles, and – like brambles – these plants spread rapidly in disturbed forest habitats.

In most clearings, the herbaceous cover is profuse, forming a thick carpet of greenery, rife with wild flowers. Here, the yellow flower-heads of *Crassocephalum montuosum* (or *Munyugunyugu*), in tight terminal clusters, may catch the eye. Often prominent as well are the purple-mauve flowers of the herb *Hypoestes aristata*, another common upland species; or the mauve-red flowers of the climbing herb *Amphicarpa africana*.

Clumps of ‘Stinging Nettles’, of various species, including *Urtica massaica* (Thabai), are usually also common in these clearings. Trailling creepers may include the familiar and widely occurring species *Thunbergia alata* (or ‘Black-eyed Susan’),
which produces bright orange flowers with dark purple-black centres.

Naturally occurring glades are another feature of the Mau Eburu Forest. Typically, the glades are in rocky areas, where the topsoil is too shallow to support deep-rooted trees and shrubs. Hollows in the glades, perennially waterlogged in some cases, are covered in the sedge Schoenoxiphium lehmannii, often referred to as ‘Water Grass’. Herbs found in the glades may include the trailing ‘Milkwort’ Polygala sphenoptera, which produces spindly racemes of delicate mauve flowers, and the prostrate, purple-flowering ‘Clover’ Trifolium burchellianum ssp. johnstonii.

Trees that flourish in sun-exposed niches around some of the glades include the species Maesa lanceolata (Mundunye), an African ‘Beech’ bearing copious creamy white flowers on long panicles, and Olinia rochetiana (Mwathathia or ‘Forest Hard-Pear’), which bears clusters of pinkish fruits. Fringing stands of Olea capensis ssp. macrocarpa (Mucarage, or ‘East African Olive’) may also be apparent. Trees of this species, once dominant in the lower reaches of the Mau Eburu Forest, have suffered greatly at the hands of loggers and of charcoal makers. In some places, the trees have not been able to regenerate, in the face of frequent fires and persistent trampling and browsing pressure from domestic livestock.

Other niche habitats are to be found nestled deep within Mau Eburu’s secluded gorges and steep valleys, beside tinkling mountain streams. Here, the ‘Spiny Tree-Fern’ Cyathea manniana (or Rusirusiru), in particular, comes into its own, forming impenetrable, prickly thickets, often more than three metres tall.

Ferns of other species cluster along seeps among the stream-side rocks, where they are joined by ‘Spike Mosses’ (Selaginella spp.), and by plants of other shade-loving species, including the creeping Violet, Viola abyssinica, which produces pale blue flowers, and the tiny, blue-flowering prostrate herb Parochetus communis.

Prominent, among taller trees growing in the valleys, are some towering examples of Ekebergia capensis (Mununga or ‘Cape Ash’) and Albizia gummifera (or Mukuruwe). Trees of both these species are deciduous in habit. Lower down, however, at altitudes below 2,200 m (7,350 ft), where the valleys open out, most of the larger trees have either been removed or killed by fire. The ridges

High-risers: Dombeya torrida (below left) and Albizia gummifera.
too, which historically supported a wide forest belt dominated by *Olea* trees (including, at lower elevations, the form *Olea europaea* ssp. *cuspidata*, also known as *Mutumaiyu* or ‘Wild Olive’), are now almost wholly denuded of mature tree-cover.

Today, in the absence of forest cover, Eburu’s foot-slopes have been colonised by rank secondary vegetation. Repeated fires have allowed the noxious fern *Pteridium aquilinum* (‘Common Bracken’), in particular, to invade large areas. Indeed, this species, which is toxic, is now widespread on disturbed ground throughout the Mau Eburu Forest.

Common, around the lower forest-edges, are tall woody shrubs of the species *Buddleja polystachya* (*Ruti* or ‘Sagewood’) and *Vernonia auriculifera* (*Muthakwa*). Other shrubs, of species associated with the forest under-storey, such as *Searsia (Rhus) natalensis* (or *Muthigitu*), can be found competing with shrubby, regenerating forest trees, in tangled thickets of secondary growth, overrun in places with aggressive climbers such as *Toddalia asiatica* (‘Mururue’ or ‘Climbing Orange’) and smothering *Ipomoea* and other creepers.

Here, the ground-cover is rife with Stinging Nettles, and with a riotous mêlée of other, weedy ‘pioneer’ plants, including *Achyranthes aspera*, *Abutilon longicuspe*, and *Leonotis nepetifolia*. The nectar-rich orange flowers of the latter, massed around nodes on stiff, upright stems, are especially attractive to sunbirds.

It is these deforested and degraded habitats, in the lower reaches of the Mau Eburu Forest Reserve, which are now the focus of rehabilitation efforts (of the kind described elsewhere in this guidebook).

Of the scattered trees and larger shrubs that remain in habitats straddling the boundaries of the Reserve, roughly 2,075 m (6,900 ft) above sea level, most are either Thorn Trees, of the species *Acacia labat* (*Mugaa* or ‘Red Thorn’), or Leleshwa Bushes, *Tarchoanthus camphoratus* (*Mururicua*). Many of the Acacias are shrubby, regenerating young trees, while much of the Leleshwa cover – until recently the dominant form of vegetation found at this altitude – has been cleared, mainly for use as domestic firewood.
The Invertebrate Fauna

A ll too often, in wildlife-rich habitats, it is the larger mammals and the birds which most engage our interest in the fauna. The many hundreds of lesser creatures that invariably make up the overwhelming bulk of the resident fauna tend to go largely unnoticed.

This is certainly true of invertebrates, which in the Mau Eburu Forest, as in other forest ecosystems, account for an estimated 80% of all the species (of plants, fungi, and animals combined) that occur. Most of the invertebrates are insects, but other arthropods, including arachnids (spiders), millipedes, centipedes, and crustaceans (in the shape of wood-lice, for example), are widely represented. And land molluscs (snails and slugs), of several species, along with annelid worms (earthworms, principally), also abound in the forest.

Invertebrates fulfil a number of vital ecological functions. Many recycle nutrients and enrich soils, either by eating and digesting plants or by breaking down organic matter, in the form of deadwood and leaf-litter, or animal excrement and carcasses. The replenished nutrients are crucial in providing a basis for renewal in the forest.

Some invertebrates (certain insects, primarily) pollinate flowers, enabling plants to produce seeds and fruits. And some are instrumental, too, in dispersing the seeds of plants. Some, as predators or as parasites, keep populations of other invertebrates in check, so ensuring that a healthy and productive ecological balance can be maintained. And as prey, invertebrates form an absolutely essential link in the food chain, providing nourishment, both for one another and for amphibians and reptiles, as well as for birds and mammals of many species.

Invertebrates permeate every stratum within the forest, from the soils underfoot to the topmost reaches of the canopy, and from the beds of streams to the innmost dark recesses of crevices and cavities among rocks. Without invertebrates, the forest ecosystem, as a haven for biological diversity, would be unable to function.

Often conspicuous among the invertebrates are the forest’s many striking butterflies. These colourful insects are usually most active on sunny afternoons, during the warmest hours of the day, when some of the large Swallowtails, in particular, may catch the eye.

Both the Green-banded Swallowtail, *Papilio phorcas*, and the Narrow Blue-banded Swallowtail, *P. nireus*, which has metallic blue inner-wing bands, frequent the edges of forest streams, often joining butterflies of other species in mud-puddling aggregations. Mackinnon’s Swallowtail, *P. mackinnoni*, a long-tailed, dark-winged species with inner-wing bands of broken-creamy-yellow, may also be party to such gatherings.

The African Mocker Swallowtail, *P. dardanus*, whose large wings are creamy-white with dark black edgings (in the case of male butterflies), is another species which may stand out, weaving its way over clearings in the forest. And the Regal Swallowtail, *P. rex*, East Africa’s largest butterfly, may be seen sailing majestically overhead among the tree-tops.

Over paths in the forest, the flier of Emperor butterflies, of species such as the Forest Pearl Charaxes, *C. fulvescens*, may catch the eye, darting jerkily between the under-canopy and the forest floor, where they gather to sip from fermenting fallen fruit or from animal dung.

Butterflies of another very striking species, the Forest Mother-of-pearl, *Salamis parhassus*, may be seen floating over glades, or mud-puddling with...
butterflies of other species in wallows in the forest. The pearly, glinting wings of this species, seen from different angles and in different lights, reflect a range of subtle sheens (from pale metallic green to shimmering rosé).

Other common forest butterflies include the Diadem, Hypolimnas misippus. The males of this species are often seen basking on leaves, in shafts of sunlight, folding and unfolding all-black wings emblazoned with large white spots. The Layman, Amauris albimaculata, meanwhile, a species with dark fore-wings, spotted with white, may be seen floating languidly among the forest under-shrubs.

Smaller butterflies include the Golden-spotted Sylph, Metisella medea, a plump-bodied Skipper with short, stubby wings, which nevertheless zips about at speed, in forest clearings. Admirals, of two species, the Dimorphic Admiral, Antanartia dimorphica, and the Long-tailed Admiral, A. schaeneia, can usually be found in clearings above the forest, visiting wildflowers. Wild nettles (family Urticaceae) are among their larval food-plants.

Shady spots on the forest floor are the domain of those cryptic butterflies, the Banded Evening Browns, Gnophodes betsimena, which sit dead-still among the leaf-litter, wings folded, resembling shed leaves – taking flight only when absolutely necessary, in order to avoid being trampled on.

Moths, as a group, far outnumber the butterflies of any habitat, in terms of the numbers of species represented. Indeed, for every one species of butterfly, there may be as many as eight or nine moth species. And yet, because moths are nocturnal, and hide during the day, they tend to escape our notice. Of the many different caterpillars on view in the forest, the vast majority are the larvae of moths.

Plume Moths (of the family Pterophoridae), tiny, delicate, silky and ghostly pale, hide among the Balsams and other shade-loving herbs on the forest floor, where they are easily flushed from cover. At dusk, robust Hawkmoths of various species, including the Fulvous Hawkmoth, Coelonia fulvinotata, may be seen in clearings – whizzing about, or hovering over flowers, long proboscises unfurled. Thus equipped, Hawkmoths can gain access to nectar secreted deep within the spurs of flowers. And it is they, almost exclusively, which pollinate the flowers of the forest’s many orchids.

Of all the insects found in the forest, it is Bees – as the principal agents of pollination, the process essential to all life – which perform the greatest service. Here, common Bees, besides the familiar
and widely exploited Honeybee, *Apis mellifera*, include tiny Stingless Bees of various species, which also nest socially, in cavities in trees.

Like Honeybees, Stingless Bees visit the flowers of a wide range of plant taxa, and are indispensable pollinators. Some are referred to as ‘Sweat Bees’ because they are attracted to human sweat, and so will follow people, often buzzing around the eyes and the nostrils. Stingless Bees may also be found sipping salts from dung or carrion or from mud-puddles or damp patches where animals have urinated. The honey they produce is prized by forest-adjacent communities.

Other Bees, often seen visiting wildflowers in clearings or around the fringes of the forest, include sturdy and loud-buzzing Carpenter Bees (of the genus *Xylocopa*), shiny black in colour with white or yellow markings. These important pollinators, often active well into the evening, nest in neatly excavated tunnels in deadwood.

Beetles, unsurprisingly, as the largest and most diverse Order of creatures in existence, are well represented in the forest. Most noticeable are those brightly coloured species that feed in open clearings during the day, on the nectar of low, flowering shrubs. Net-winged Beetles (family Lycidae), for example, with their lurid orange and black-tinged wings (Nature’s warning hues, these, to advertise toxicity), are hard to miss, particularly given their slow and ponderous gait and clumsy flight.

Longhorn Beetles (family Cerambycidae) of various species, all with extraordinarily long and adaptable antennae (their ‘horns’), may also be found dismantling flowers. Metallic Longhorns of the genus *Promeces*, in particular, many of a shiny electric green-blue colour, may stand out. The larvae of some Longhorns are maligned timber pests, boring into the woody stems of plants.

Inside the forest, the beetle fauna is far less obvious. Here, many of the beetles are of species that lurk beneath the leaf-litter, or which dwell inside decomposing logs or under loose bark. Some are **Ground Beetles** (family Carabidae) – long-legged and fast-moving predators which scuttle about after dark, hunting other invertebrates. **Rhinoceros Beetles**, *Oryctes* spp., large and familiar nocturnal insects known for their habit of flying clumsily into artificial lights, feed on plant sap, while their larvae, plump grubs, consume decaying vegetation on the forest floor.

Not to be overlooked are the many different **Ants** (family Formicidae) and **Termites** (Isoptera) which round the clock are busy digesting vegetable matter, and recycling this into enriching soil nutrients. With the help of assiduously cultivated fungi, termites break down otherwise indigestible woody material.

The ants include the infamous ‘**Siafu**’ or **Safari Ants**, *Dorylus* sp., which – after rain – march across the forest floor in long, menacing trails, carrying off and devouring the eggs and larvae of other insects. These ants, which also kill and devour earthworms, molluscs and other invertebrates, are never shy to let you know of your transgression, should you stand in their path. By keeping the populations of other invertebrates in check, ‘Siafu’ play an important regulatory role in balancing the forest ecology.

At times, the most vocal forest insects are **Cicadas** (family Cicadidae), whose shrill, piercing calls, made using specialised structures known as tymbals, are resonated by the insects’ hollow abdomens. Before pupating, Cicada larvae spend several years in the soil, feeding on roots. After emerging en masse, they climb into the forest under-storey, where they moult, before beginning their noisy life as adults, feeding exclusively on plant sap.
Often conspicuous, among the forest’s non-insect invertebrates, are some very large **Spiders**. Yellow and green in colour, with bulbous, shiny abdomens and long, powerful fore-legs, these are female **Golden Orb-Weavers** (genus *Nephila*), and they preside over strong, exquisitely crafted webs, strung over leafy forest pathways.

To us, these spiders are harmless, despite their intimidating appearance. Their webs, which are perfect ‘orbs’, may exceed 1.5 metres in diameter. As with many spider groups, sexual dimorphism is extreme: Males, diminutive by comparison, lurk warily on the peripheries of webs. Many are killed and eaten by the females after mating.

The small orb-web webs of another common genus, that of the **Kite** or ‘**Buffalo**’ Spiders (*Gas-teracantha*), are usually much closer to the ground, often between tussocks of sedge in forest glades. The hard exoskeletons of these tiny, agile spiders are flat, wedge-shaped and spiky, with red or yellow markings. In the early morning sun, the glinting webs, laden with dewdrops, dance in the breeze like rainbow-coloured lattices of fine-spun silk.

After prolonged heavy rains, **Molluscs** too, of various species, may suddenly appear in prodigious numbers, on logs and in the forest undergrowth. Some of the bigger snails, of the genus **Limicolaria**, with broad conical shells, belong to the same family (the Achatinidae) as the Giant African Snails, the largest of all terrestrial gastropods, and so are hard to miss. Small snails, though, of several genera, including **Conulinus** (family *Cerastidae*), **Gulella** (Streptaxidae), and **Gonaxis** (Bradybaenidae), may also catch the eye.

Most of these snails feed on the leaves, stems, soft bark, and fruits of forest plants, or on decomposing vegetable matter. Prone to desiccation over the drier months, they spend much of their time aestivating within their shells, under leaf-falls or logs, where they lay their eggs. Snails provide a rich source of food for many other creatures, including predatory insects, centipedes, reptiles, birds, and rodents and other mammals. The snails of one group, the Streptaxidae, are themselves carnivorous, feeding on insect larvae and earthworms, or even on other snails.

Millipedes (Class: Diplopoda), too, are most active after rain. Slow-moving denizens of leaf-litter and of deadwood, they coil into a tight spiral when disturbed. Feeding mainly on decaying plant matter, they too play a vital role in recycling nutrients, and so in helping to enrich forest soils.

All this goes to show how, in the forest, it is lowly invertebrates of one sort or another which, in many different ways, underpin the healthy function and well-being of the entire living ecosystem.
Amphibians and Reptiles

In the Mau Eburu Forest, as in other highland environments where temperatures plummet at night (to below 7 °C, during the coldest month, August, in the case of Mau Eburu), the herpetofauna – that of the amphibians and reptiles combined – is neither very plentiful nor especially diverse. This is because amphibians and reptiles are ectothermic. Their body temperatures change with the temperatures of their surroundings. In forests, they are generally most abundant, and most diverse, at lower altitudes, where day/night temperature fluctuations are less marked.

Very few of the forest’s amphibian and reptile species are easily seen, moreover, given that most are nocturnal and also extremely well camouflaged. Most are very secretive too, and wary, moving off on sensing your approach, long before they can be seen. For want of close scientific scrutiny, there is still no comprehensive checklist of the Mau Eburu herpetofauna. So, other species – over and above the 35, or so, taxa for which there are plausible records – may yet turn up in the forest.

Both as predators and as prey, amphibians and reptiles serve as vital links in sustaining the food chain of a healthy ecosystem. Amphibians, moreover, with their moist, permeable skins, are extremely sensitive to environmental degradation and disturbance, making them very good bio-indicators of habitat quality.

Diurnal lizards, of species which are given to basking in the sun, on exposed rocks or branches, are the forest’s most conspicuous reptiles. Jackson’s Forest Lizard, Adolphis jacksoni, is an arboreal species that on hot days basks high up on the trunks and branches of trees near the forest’s edge. From a distance, these slender lizards look uniformly olive-brown, but – seen up close – their flanks are speckled with fine spots, yellow and blue.

Chameleons of at least two species occur in the forest. Of these, the species most often encountered is Von Höhnel’s Chameleon, Chamaeleo hohnelii, an East African endemic with a helmet-like raised casque and beard-like chin and throat projections. Also present is the Side-striped Chameleon, C. bitaeniatus, a smoother-bodied species, often pale grey-brown in colour, with two prominent flank stripes. Chameleons of either species are most often seen low down in shrubby thickets, around the edges of forest clearings and glades.

With so much good cover in which to hide, snakes are very seldom encountered in the forest. Occasionally though, the panicked calls of forest birds, engaging in ‘mobbing’ behaviour, may draw one’s attention to a Jackson’s Tree Snake, Thrasops jacksoni, sliding over branches in the under-canopy. These long, fast-moving arboreal snakes, shiny black in colour, feed on chameleons and other lizards, as well as on birds and small mammals.

Snakes to be found on the forest floor, hiding under logs or in drifts of leaf-litter, may include the Montane Egg-eater, Dasypeltis atra, a nocturnal species, purple-brown in colour, which feeds on birds’ eggs. The familiar, widely-occurring Brown House Snake, Lamprophis fuliginosus, a nocturnal species which feeds on rats and mice, may also be found sheltering in such niches.

Other fairly common snakes which have been recorded in the forest include both the White-Lip, Crotophopeltis botamboeia, an olive-brown, nocturnal species that preys mainly on frogs, and which favours damper areas near streams, and the East African Garter Snake, Elapsoidea loveridgei – a small, blackish, mildly venomous nocturnal species with paired white bands along the length of...
its body. Garter Snakes prey on lizards, frogs, and smaller rodents, as well as on other snakes.

The **Slug-eater**, *Duberria lutrix*, a slow-moving diurnal snake of a rich brown colour, may be found lurking among tussocks of sedge in open, ridge-top glades.

Snakes of other species, including the **Mole Snake**, *Pseudaspis cana*, and the **Kenyan Striped Skaapsteker**, *Psammophylax multisquamis*, have been collected near Ndabibi, on Mount Eburu’s southern foot-slopes. The **Kenya Horned Viper**, *Bitis worthingtoni*, has been found here too – on open, rocky ground, amid the Leleshwa bushland skirting the forest. And **Battersby’s Green Snake**, *Philothamnus battersbyi*, has been found along the banks of streams within the forest.

Most of the forest’s amphibians, all either frogs or toads, are nocturnal. They are most active during periods of heavy rain, when insect prey is most abundant, and when males, gathered at breeding sites, can be heard making advertisement calls to attract prospective mates. At such times, the high-pitched *tink–tink–tink–tink* chorus of the **Mountain Reed Frog**, *Hyperolius montanus*, a small, pale brown species that is endemic to Kenya’s Central and Western Highlands, may be heard reverberating through clearings in the forest. Tiny reed frogs of other species in the genus *Hyperolius*, recorded elsewhere on the Mau Highlands, may also be present in the Mau Eburu Forest.

Larger frogs which may be found lurking on streambanks include the familiar, widely occurring **Anchieta’s Rocket Frog**, *Ptychadena anchietae*, a tan-brownish species with a strident *reek–reek–reek* call. Like other Ridged Frogs (named for their ‘ridged’ dorsal skin-folds), these frogs have pointed snouts and well-developed hind limbs, capable of powering explosive leaps. Ridged Frogs of another species, **Mahnert’s Rocket Frog**, *P. mahnerti*, a Kenya endemic found at high altitudes on other mountains in western and central Kenya, may also occur on Mount Eburu.

The **Angolan River Frog**, *Amietia angolensis*, a familiar and widespread species, can usually be found along streams, either lurking in shallow pools or lying up on mud-banks, beneath overhanging vegetation. These robust frogs, pale olive-brown in colour, are active day and night, year-round.

The **Molo Frog**, *Amietia wittei*, also known as **de Witte’s River Frog**, is on record as occurring in Mau Eburu’s upper headstreams. This robust, olive-brown species, active day and night, is a high-altitude specialist, common elsewhere on the Mau Highlands.

Northern Clawed Frogs, *Xenopus borealis*, flat-bodied, blubbery and dark in colour, and with beady eyes on the tops of their heads, may be seen in pools in streams, floating – limbs akimbo – just beneath the water’s surface. Frogs of this species are entirely aquatic, having fully webbed hind limbs with conspicuous claws.

Of the toads, the species most often encountered around the lower edges of the Mau Eburu Forest is the large (and aptly named) **Guttural Toad**, *Bufo gutturalis* – a noisy nocturnal species with a rough, warty dorsal skin. The smaller **Kerinyaga Toad**, *B. kerinyagae*, a heavily blotched species with conspicuous skin-warts, may also be present – in clearings at higher elevations.

Overall, the herpetofauna of Mau Eburu is not well documented. So, there is a role for ‘citizen science’ in helping to develop a thorough checklist. Records of amphibian and reptile sightings in the forest can be submitted, along with corroborating images, to the publisher of this *Visitors’ Guide*.

FOREST FAUNA

Von Höhnel’s Chameleon, *Chamaeleo höhnelii*.

The Molo Frog, Amietia wittei, also known as de Witte’s River Frog, is on record as occurring in Mau Eburu’s upper headstreams. This robust, olive-brown species, active day and night, is a high-altitude specialist, common elsewhere on the Mau Highlands.

Northern Clawed Frogs, *Xenopus borealis*, flat-bodied, blubbery and dark in colour, and with beady eyes on the tops of their heads, may be seen in pools in streams, floating – limbs akimbo – just beneath the water’s surface. Frogs of this species are entirely aquatic, having fully webbed hind limbs with conspicuous claws.

Of the toads, the species most often encountered around the lower edges of the Mau Eburu Forest is the large (and aptly named) **Guttural Toad**, *Bufo gutturalis* – a noisy nocturnal species with a rough, warty dorsal skin. The smaller **Kerinyaga Toad**, *B. kerinyagae*, a heavily blotched species with conspicuous skin-warts, may also be present – in clearings at higher elevations.

Overall, the herpetofauna of Mau Eburu is not well documented. So, there is a role for ‘citizen science’ in helping to develop a thorough checklist. Records of amphibian and reptile sightings in the forest can be submitted, along with corroborating images, to the publisher of this *Visitors’ Guide*.

A S home to a rich variety of upland forest birds, the Mau Eburu Forest is an added bonus for birdwatchers lured to this part of Kenya by the world-famous birding attractions of the nearby central Rift Valley lakes – Naivasha, Elmentaita, and Nakuru.

A walk on any of the Mau Eburu nature trails will yield an interesting ‘mix’ of upland forest birds, including some of species that can be difficult to find in other Kenyan forests. Some are species with a western, or predominantly western, distribution, and which – east of the Rift Valley, in forest habitats closer to Nairobi – are either absent or may occur only patchily.

Relative to other forests where comparable bird assemblages can be seen, Mau Eburu has the advantage of being readily accessible to visitors from Nairobi. And, because the forest is so close to Lake Naivasha, it lies within easy reach of the lakeshore’s many well-established campsites, lodges and hotels. A choice of exhilarating walking trails, coupled with the availability of knowledgeable guides from the Naivasha birding circuit, further enhances Mau Eburu’s appeal as a birding destination.

Six hiking trails are profiled elsewhere in this guidebook. Some begin in the Acacia/Leleshwa woodlands or in the scrubby secondary re-growth vegetation skirting Mount Eburu. Here in the foothills, the orange flowers of the locally abundant herb *Leonotis nepetifolia*, especially, attract some of the region’s most stunning long-tailed Sunbirds – including the Golden-winged, *Drepanorhynchus reichenowi*; Tacazze, *Nectarinia tacazze*, and the Malachite, *N. famosa*. Small, short-tailed Sunbirds, including the Eastern Double-collared, *Cinnyris mediocris*, and the Northern Double-collared, *C. reichenowi*, may also be conspicuous.

One of Africa’s most striking birds, Doherty’s Bush-shrike, *Chlorophoneus dohertyi*, is given to skulking in the bushy thickets at the forest’s edge, where – although common – it is not always easily found. Black-billed Weavers, *Ploceus melanogaster*, wholly black but for their vivid yellow face-masks, may also be encountered here. In Kenya, weavers of this species are common only in forests west of the Rift Valley. Another western species to look out for, here at the forest’s edge, is the Yellow-billed Barbet, *Trachylaemus purpuratus*.

Low-foraging denizens of the dense secondary growth lining trails leading up into the mature forest include warblers of several species. Some, such as the Cinnamon Bracken Warbler, *Bradypterus cinnamomeus*, and the Brown Woodland Warbler, *Phylloscopus umbrovirens*, can at first be hard to tell apart. Palearctic migrant species, seen here during the northern hemisphere winter months (October–April), may include Blackcaps, *Sylvia atricapilla*, and Willow Warblers, *Phylloscopus trochilus*.

The Black-collared Apalis, *Apalis pulchra*, with its prominent dark collar-band, its buff-chestnut flanks, and its long, ever-twitching tail, is instantly recognisable. The Grey Apalis, *A. cinerea*, may also be seen, in shrubby thickets near the forest’s edge.

Yellow-crowned Canaries, *Serinus flavivertex*, in small, vocal flocks, can usually be found at the forest’s edge or in forest clearings. The Thick-billed Seedeater, *Crithagra burtoni*, is another highland species to look out for, in thickets around clearings and glades.

On the exposed rocks of cliff-faces in the valleys, Schalow’s Wheatear, *Oenanthe schalowi* (a Kenyan race of the Abyssinian Wheatear, *O. lugubris*) may also catch the eye, flitting about in pursuit of insect prey. Male birds of this species are predominantly blackish above, with a paler, brownish crown, and with a white belly and cinnamon-hued rump- and under-tail coverts. The females are brownish, with streaking on their chests. Birds of this race are endemic to the central Rift Valley region of Kenya and northern Tanzania.

Waxbills to look out for on paths leading up into the forest include both the Common Waxbill, *Estrilda astrild*, and the Yellow-bellied Waxbill, *Coccopygia quartinia*, a very colourful and striking species. Inside the forest, foraging among understorey shrubs, pairs of Grey-headed Negrofinches, *Nigrita canicapillus*, may be encountered.
Foraging on the ground, on or beside forest paths, the shy **Blue-spotted Wood-Dove**, *Turtur afer*, is very often seen. This is another species whose range in Kenya is confined almost exclusively to upland forests and forest-edge habitats west of the Rift Valley. The gentle cooing of these doves, in the afternoons, from perches in the under-canopy, is one of the most soothing of all forest sounds.

Birding within the forest proper calls for some patience, as the birds here tend (as they do in other forests) to forage in mixed-species flocks, with the result that parts of the forest may for long periods seem eerily quiet – and apparently bereft of birdlife. The rewards, though, upon locating a mixed-species flock, can be immense …

At times, a mixed flock may number more than 100 forest birds, of 15 or more species. Chattering parties of foraging **White-headed Wood-hoopoes**, *Phoeniculus bollei*, ‘flopping’ from tree to tree, probing the under-bark for grubs, are often present in such flocks. The **Fine-banded Woodpecker**, *Campethera tullbergi*, is another species frequently seen in mixed flocks, which here may also include **Brown-capped Weavers**, *Ploceus insignis*, given to scouring mossy boughs; **White-browed Crombecs**, *Sylvietta leucophrys*, combing twigs and branches for insect larvae, and **Black-throated Wattle-eyes**, *Platysteira peltata*.

Mixed flocks may include **Montane Orioles**, *Oriolus percivali*, foraging in the canopy. Other birds, of smaller species, such as the **Chestnut-throated Apalis**, *Apalis porphyrolaema*, may also be active in the canopy. Lower down, in the understorey, pairs of **Grey Cuckoo-shrikes**, *Coracina caesia*, demure, unobtrusive birds, may be present. **African Paradise Flycatchers**, *Terpsiphone viridis*, the males of white-morph birds especially, with
their streaming white tails, are nothing if not eye-catching. **White-tailed Crested Flycatchers**, *Elminia albonotata*, meanwhile, given to flitting about in the shadows of the under-storey, can be difficult to observe.

The forest’s abundant insect life provides sustenance for birds of many other species. Caterpillars hatching on forest trees and shrubs are a dietary staple of the **Narina Trogon**, *Apaloderma narina*, one of Africa’s most colourful birds. Another species, the **Bar-tailed Trogon**, *A. vittatum*, has also been recorded in the forest. Trogons, though, sitting quietly on perches just beneath the canopy, can be very hard to see, despite their bright red bellies. The same goes for another colourful caterpillar specialist, **Klaas’s Cuckoo**, *Chrysococcyx klaas*, a species that, while often heard whistling from the treetops, is seldom easily seen.

Vociferous **Greenbuls** of four species – **Slender-billed**, *Andropadus gracilirostris*; **Mountain**, *A. nigriceps*; **Yellow-whiskered**, *A. latirostris*, and **Cabanis’s**, *Phyllastrephus cabanisi* – occur in the forest, where they can usually be found lurking in the under-storey, among the foliage of fruiting trees. Here, **Yellow-rumped Tinkerbirds**, *Pogoniulus bilineatus*, may also be seen, along with parties of busily foraging White-eyes, of which three species – including both the **Montane White-eye**, *Zosterops poliopterus*, and the **African Yellow White-eye**, *Z. senegalensis* – have been recorded in the forest.

The diverse mix of trees and shrubs means that wild fruit is available through much of the year. This sustains resident birds of many other species, not least the forest’s stunning **Hartlaub’s Turacos**, *Tauraco hartlaubi*, often heard, and easily seen – either shinning up tree-trunks or gliding, scarlet-winged, from tree to tree.

The fruiting trees also attract birds of several wandering species. These may include flocks of **African Olive Pigeons**, *Columba arquatrix*, and of **Starlings** too, including **Sharpe’s**, *Pholia sharpii*, and the **Slender-billed**, *Onychognathus tenuirostris*, which are sometimes present in large numbers, up in the canopy. Flocks of shrill-sreeching **Red-fronted Parrots**, *Poicephalus gulielmi*, visit the upper reaches of the forest from time to time. And the raucous **Black-and-white Casqued Hornbill**, *Bycanistes subcylindricus*, a large, western species, occasionally also visits the forest. Resident **Crowned Hornbills**, *Tockus alboterminatus*, conspicuous at times, favour fruiting trees around the forest’s edge.

Inside the forest, low down amid the tangled undergrowth, some shy forest birds may be seen.
The Brown-chested Alethe, *Alethe poliocephala*, nowhere very common in our region, is one such species. Another is the Abyssinian Crimsonwing, *Cryptospiza salvadorii*, a striking waxbill that forages within dense cover on the forest floor. Other skulking species to look out for, here in the undergrowth, are the African Hill Babbler, *Pseudoalcippe abys-\[sic\]inica*, the Abyssinian Ground-Thrush, *Zoothera piaggiae*, the Mountain Yellow Warbler, *Chloropeta similis*, and the secretive White-starred Robin, *Pogonochilus stellata*.

In open vistas of sky, above clearings in the forest, various birds of prey, which nest in the forest, may be seen circling overhead. The forest’s resident Crowned Eagles, *Stephanoaëtus coronatus*, in particular, are often seen – and heard – displaying high above the treetops. The most powerful of all African raptors, these huge eagles prey on monkeys and on small forest antelopes and their calves. One of their nests in the Mau Eburu Forest, wedged in a fork high in a towering tree, has been in continual use for generations, and the ground below this nest is sometimes littered with the picked remains of their mammalian victims.

Verreaux’s (Black) Eagle, *Aquila verreauxii*, is another raptor to look out for, soaring over ridge-top cliffs in the forest where its hyrax prey abounds. The Long-crested Eagle, *Lophaëtus occipitalis*, can usually be found – perched in isolated trees around the forest’s edge, scanning the ground cover below for rodent prey.

Squadrons of Great White Pelicans, *Pelecanus onocrotalus*, flying back and forth, morning and evening, between Lake Naivasha and their breeding sites on Lakes Nakuru and Elmentaita, pass directly over Mau Eburu. On this flight path, they may be joined by Lesser Flamingos, *Phoeniconaias minor*, and by other water birds, including ducks, and by soaring African Fish Eagles, *Haliaeetus vocifer*. Vultures too (both Rüppell’s, *Gyps rueppellii*, and White-backed, *G. africanus*) are often seen soaring overhead.

Clearings in the forest, in the early mornings especially, attract flocks of swallows and martins. Black Saw-wings, *Psalidoprocne pristoptera*, in pursuit of swarming insects, can be difficult to follow in flight, as they swoop in low to blitz forest clearings. On the ground, Scaly Francolins, *Francolinus squamatus*, may be flushed from cover, while out foraging in clearings and glades.

Herbs and low shrubs in such clearings are favoured by Hunter’s Cisticolas, *Cisticola hunteri*. The melodious song duets performed by pairs of these small birds are perhaps the most enchanting of all forest sounds, here as in other parts of the Kenya highlands.

Nocturnal bird-sounds to listen out for, if you are out camping in the forest, include the gentle, chirring lullabies of Montane Nightjars, *Caprimulgus poliocephalus*, and the penetrating, rhythmic hooting of the forest’s resident Cape Eagle-Owls, *Bubo capensis*. Sometimes, in clearings in the forest, Marsh Owls, *Asio capensis*, may be flushed from the cover of their daytime roosts amid thick clumps of tussock-sedge.

A hike in the Mau Eburu Forest, then, offers a rich birding experience. And, while the forest may not be the exclusive haunt of any range-restricted endemic bird species, it does nevertheless harbour an amazing concentration of upland Kenyan forest birds, in a setting that is at once both scenic and readily accessible.

Eburu birds (clockwise from above): Golden-winged Sunbird; Long-crested Eagle; Black-billed Weaver; White-starred Robin; Eastern Double-collared Sunbird.
Mammals

The mammalian fauna of the Mau Eburu Forest Reserve is best known for the relict population it includes of that large and Critically Endangered forest antelope subspecies, the Mountain (or Eastern) Bongo, *Tragelaphus euryceros isaaci*, a subspecies that is now found only in Kenya. Very few people, though, have seen a Mountain Bongo in the forest.

Nearly all of the images taken so far of the Mau Eburu animals come from remotely-operated night cameras positioned beside tracks and at wallows and natural salt-licks deep within the forest, in precarious steep, almost inaccessible mountain gorges and valleys. This intractable domain is one of just a few remaining strongholds for the exceedingly shy and elusive Mountain Bongo (*Separate Article, pp. 26–29*).

In being a forest specialist that depends for its survival on a healthy and undisturbed forest environment, the Mountain Bongo has become the ‘flagship’ indicator, *par excellence*, for conservation efforts currently under way in the Mau Eburu Forest. Many other forest taxa, of plants, as well as of fellow animals and other lesser creatures, stand to benefit from this conservation focus on the Mountain Bongo.

Like the Mountain Bongo, most of the forest’s other mammals are shy, and will go bounding off, or will quietly slink away or dive for cover, before you can get close enough to glimpse – let alone observe – them. And besides, many are of species that are nocturnal by nature.

Giant Forest Hogs, *Hylochoerus meinertzhageni*, huge pigs with long black hair, are among the larger mammals that you may startle in the forest. Adult males may weigh in excess of 250 kg. Fond of wallowing in mud, these hogs feed mainly on herbs growing on the forest floor, and on the sedges and grasses in forest clearings and glades.

Once widespread across much of equatorial Africa, the Giant Forest Hog has been a victim of relentless habitat destruction and fragmentation, and of bush-meat hunting and persecution with packs of dogs. Not described until 1904, this species has the distinction of being the last of Africa’s large mammals to be brought to the notice of science. Its Mau Eburu population, like that of the Mountain Bongo, is now one of only a few isolated clusters left within the broader Mau ecosystem.

Most feared, among Eburu’s larger mammals, is the **African Buffalo**, *Syncerus caffer*. In the past, some of these animals, given to lying up in thickets of secondary bush fringing the forest, have intimidated people. Emerging at night to graze in the foothills and outlying farmlands, the buffaloes have come into conflict with local farmers, anxious to protect their crops. Some buffaloes, moving back and forth on old dispersal corridors between Mau Eburu and the Naivasha lakeshore, have proved an unwelcome hazard for riparian communities.

Foraging **Bush Pigs**, *Potamochoerus larvatus*, meanwhile, emerging from the forest at night to rootle in vegetable patches, have been the cause of additional nuisance to farmers. In the forest, Bush Pigs are hardly ever encountered. They hide by day under beds of thick vegetation beside streams, deep in the valleys. They are omnivorous, and will consume, in addition to roots, tubers and bulbs,
a variety of other foods, including both fungi and fallen fruit, as well as insect larvae, beetles, snails, amphibians, and reptiles. On their nightly foraging excursions, they may cover distances of more than six kilometres.

Diurnal primates, of two species, are the forest's most conspicuous mammals. One, the **Guereza (Black-and-White) Colobus Monkey**, *Colobus guereza*, is most often seen high in the canopy, in foraging troops, busily consuming leaves, or simply enjoying the warmth of the sun. These Guerezas, which have slender black tails tipped with mops of white fur, are representatives of the Central African (Lowland) form of the species.

This form, which occurs only to the west of the Great Rift Valley, differs from the East African (Highland) form that occurs in forests east of the Rift, and which has bushier, all-white tail fur. The croaking dawn choruses of a Guereza troop are among the most stirring of all forest sounds. The Guereza troops range widely in the forest, and can usually be found in the tall *Juniperus* trees of the Bamboo zone, around the summits of Mau Eburu.

The forest's other common diurnal primate is the **Blue Monkey**, *Cercopithecus mitis stuhlmanni* – a Central African form that in Kenya occurs only in forests west of the Rift Valley. In forest habitats to the east of the Rift, these monkeys are replaced by their distant cousins and fellow Gentle (Diadem) Monkeys, the White-throated Guenons (commonly referred to as Sykes's Monkeys).

Blue Monkeys subsist largely on the fruits of forest trees, but they also eat insects and their larvae, which they pluck methodically from loose bark or decaying deadwood, or from lichens or mosses, up in the canopy. The booming ‘pyow’ rallying calls of males, uttered in the early mornings, when troops are on the move, are every bit as strident as the croaking reveilles of the resident Guereza troops. Monkeys of both species, Guereza and Blue, feature prominently among the prey of the forest's powerful Crowned Eagles.

Roving troops of **Olive Baboons**, *Papio anubis*, occasionally make foraging sorties into the upper reaches of the forest from rest sites in rocky gorges near the forest's edge. Highly adaptable omnivores, they climb trees and scale cliffs, gathering fruits and seedpods. They also eat insect grubs, reptiles, birds’ eggs and the young of both mammals and birds.

Nocturnal primates of at least two species are known to occur in the forest. Both are Galagos (or Bushbabies), which sometimes – as climbing or as leaping silhouettes – are seen ‘limbering up’ just
before dark, in trees around the forest’s edge. The **Silver Galago**, *Otolemur argentatus*, the larger of the two, may be a western form of the **Greater Galago** (*O. crassicaudatus*), and in Kenya it occurs only in forests and woodlands west of the Rift Valley. The other species, given to spectacular, bounding leaps, is the (Kenya race of the) **Northern Lesser Galago**, *G. senegalensis* (ssp. *braccatus*).

Both rest by day in hollow trees or among thick foliage. At night, they leave the forest, to forage for Acacia resin in the surrounding woodlands. They also feed on flowers and on fruits, as well as on insects and beetles and other invertebrates. Both are highly vociferous, emitting loud, shrieking calls.

Another highly vocal nocturnal forest-dweller, famed for the blood-curdling screeches of the male territorial call, is the **Southern Tree Hyrax**, *Dendrohyrax arboreus* – a species that feeds mainly on leaves, fruits, and twigs up in the canopy, but which also descends to eat low-growing aromatic herbs on the forest floor.

Leopards, *Panthera pardus*, although seldom encountered, are among the large apex predators found in the Mau Eburu Forest. The imprints of their pug-marks are frequently seen on muddy forest trails. Of their larger prey species, **Bushbuck**, *Tragelaphus scriptus*, are particularly vocal, barking out in alarm whenever they sense danger, before bounding away through the forest undergrowth.

The spoor of **Spotted Hyenas**, *Crocuta crocuta*, too, is often evident – both in the forest and in outlying areas. These opportunistic, loping carnivores also wander extensively on scavenging forays across neighbouring farmlands and around nearby settlements.

Serval, *Caracal* (*Felix serval*), are sometimes seen in glades and open areas above the broad-leaf forest, hunting rodents. A smaller predator, very active in the forest at night, is the **Blotched Genet**, *Genetta tigrina* – an arboreal species that feeds mainly on rodents, but which also eats fruits and invertebrates.

Another small predator, often seen during the day, streaking across forest paths, is the **Slender Mongoose**, *Galerella sanguinea*. The mixed diet of this species includes rodents, insects and insect larvae, snails, reptiles, frogs, and the nestlings and eggs of birds. In wet or swampy areas, the **Marsh Mongoose**, *Atinax paludinosus*, a thick-set, dark-haired species with a similarly mixed and varied diet, is occasionally encountered.

Of the secretive forest antelopes, the species most often seen, besides the **Bushbuck**, is **Harvey’s Red Duiker**, *Cephalophus harveyi*. Diurnal by nature, these small, chestnut-red duikers move about in the dappled shade on the forest floor, browsing on low herbs and on fallen fruits and flowers. Another species, the **Common Bush Duiker**, *Sylvicapa grimmia*, frequents the bushy forest verges.

Duikers of other species, historically present in the forest, and still found in other parts of the Mau Highlands, seem to have been extirpated. These are the **Yellow-backed Duiker**, *Cephalophus silvicultor*; the **Blue Duiker**, *C. monticola*, and the **Black-fronted Duiker**, *C. nigrifrons*. Some local people, though, who know Mau Eburu well, are adamant that three duiker species still occur in the forest. This raises the intriguing prospect that one of these ‘vanished’ species might still be present. So, the hope is that one day its identity might be revealed, probably through remote camera surveillance.

Little is known about the smaller mammalian fauna of Mau Eburu. But here, as in other upland forests in East Africa, two groups – Rodents and Bats – may together account for more than 35 % of all the mammalian species that occur. In terms of overall numbers, the Bat and Rodent populations...
far exceed those of all the forest’s other mammals put together.

The largest rodent in the forest is the Crested Porcupine, *Hystrix cristata*, a nocturnal forager that covers considerable distances, eating roots, tubers, bulbs, tree-bark, and fallen fruits—while sometimes shedding quills along the way. During the day, porcupines rest in burrows, or in crevices in rocks. On their foraging excursions, they have become notorious for raiding vegetable patches in adjacent farmlands, and for devouring food-crops.

The burrows of the nocturnal Gambian Giant Pouched Rat, *Cricetomys gambianus*, are obvious in places, around the bases of forest trees. It is rodents of this species, bred in captivity in Tanzania and trained, that have been used as sniffers in locating land-mines planted during the civil wars in both Mozambique and Angola. In the forest, this species, which is also an accomplished climber, with a distinctive half-white tail (the terminal half is white), eats mainly fruits, seeds, and roots.

The Ochre Bush Squirrel, *Paraxerus ochraceus*, is a common diurnal rodent, often seen in shrubs at the forest’s edge, busily foraging for fruits and seeds. In the forest, the Red-legged Sun Squirrel, *Heliosciurus rufobrachium*, may be seen up in the canopy, racing along branches or peering down, flicking its striking, black-and-white-barred tail.

Rodents of smaller species, mostly of Rats and mice, breed rapidly and so are always present in very large numbers—providing a ready prey-base for owls, raptors, snakes, and predatory mammals, which in turn act as a natural ‘pest-control’ service, in helping to keep their great numbers in check.

The Mau Eburu Forest also provides shelter and sustenance for multitudes of Bats—of many species, both fruit-eating and insectivorous. The Fruit Bats are perhaps the forest’s most important seed-dispersers. By consuming the fruits of one tree, and then excreting the swallowed seeds in another part of the forest, these robust, strongly flying bats perform the vital service of helping trees to propagate themselves and spread.

The Insectivorous Bats, for their part, play a crucial role in keeping the forest’s very large and potentially destructive populations of moths and other night-flying insects in check.

Night and day then, round the clock, mammals—big and small, of one sort or another, mostly unseen by us—are playing their part in preserving the delicate ecological balance which enables the forest as a whole to function as a productive, self-sustaining ecosystem.
PART 3 Exploring MAU EBURU
Exploring Mau Eburu

Six Nature Trails are presented on the pages that follow. These Trails are designed to give walking parties the chance to visit, and to explore, different parts of the Mau Eburu Forest.

Places of special interest and of outstanding natural beauty feature in all six of the Trails, which collectively take in some of the most stunning scenery to be found within the forest. The Trails vary in distance covered, steepness (gradient), and altitudinal range, as well as in severity. Most, though, are hikes covering between five and ten kilometres, which may take anywhere between four and six hours to complete – albeit at an unhurried pace, allowing for a picnic stop along the way and for frequent sightseeing breaks.

For each Trail, detailed Route Notes are provided, together with an illustrated Overview describing and showing some of the appealing features along the way. Approach routes and starting points are described below, under the heading GETTING TO EBURU. Some useful additional pointers – on road conditions, security, parking, campsites, local guides, admittance fees and other practicalities – are included.

GETTING TO EBURU

APPROACH 1

NAIVASHA TO MAIN GATE/EBURU FOREST STATION

From Naivasha, take the A104 Highway towards Nakuru. About 10 km after passing Delamere Farm Store, you will come to the Morendat Junction. The road here is lined with Acacia trees, and on the left there is a sign for Great Rift Valley Lodge. Turn LEFT at the junction, onto Moi North Lake Road, now tarred.

About 10 km along this road, there is a T-junction with a sign for the KenGen Eburru Geothermal Power Station. Turn RIGHT at this T-junction. This road climbs, through ranch lands, towards the settlement of Eburru. After 6 km, there is another junction, with a sign for Arthur Magugu Secondary School. Here, you will see telecommunications masts atop a high mountain peak.

Turn LEFT at this junction, and continue to climb, passing farmlands dotted with homesteads. After about 3 km, having passed Eburru Secondary School on the left, the road curves – first to the left and then sharply to the right. The compound on the right with a barbed wire fence is the local Chief’s office. The road then climbs steeply, passing a medical clinic on the right, before taking you through Eburru Trading Centre.

Drive on for a further 3 km, uphill and through a four-way intersection, before descending to the Main Gate of the Eburu Forest Reserve. The KenGen Geothermal Plant is located immediately inside the Gate. From the Gate, drive on for 400 m to the Eburu Forest Station.

Distance (Morendat Junction to Eburu Main Gate): 22 km

Eastern Summit Trail:
Access – from Eburu Forest Station

The starting point for the Eastern Summit Trail is 3.7 km from the Forest Station, on the right-hand side of the Main Forest Road. At the Forest Station, turn LEFT onto the Main Forest Road, which is a narrow dirt track.

NOTE – Stinging Nettles, chest-high in places, are a persistent hazard on most of the Eburu Walking Trails – in the valleys especially. Hikers are therefore advised to wear protective clothing, in the form of long trousers, over thick socks, and shirts or jackets with long sleeves.
Note: A 4x4 vehicle with good ground clearance is essential.)

After climbing for 300 m, the Main Forest Road passes through a couloir with towering walls on either side. It then dips into a level area of open grassland, where a capped geothermal well stands. The grassland is surrounded by Dombeya forest. On entering this forest, the track narrows markedly – so much so that you may need to fold back your vehicle’s wing mirrors.

On this climbing track, with occasional dips, it is recommended that vehicles are kept in 4WD and are driven at low speed. Hazards lining the track include protruding roots and tree-stumps, often hidden under layers of covering vegetation.

The side-track, to the right, on which the Eastern Summit Trail begins, is not signposted (as yet), and can be easy to miss, given the profuse ground-cover. Nor (as yet) is there any cleared area for parking.

The Eastern Summit Trail ends at the Forest Station. Ideally then, hikers will need to arrange for a driver to drop them off at the starting point, and then to collect them afterwards from the Forest Station. The hire of a local guide is strongly recommended.

Central Forest Glade Campsite: Access – from Eburu Forest Station

Central Forest Glade Campsite is the starting point for both the Western Summit Trail and the Deep Valley (Waterfall) Trail. This Campsite, beside Main Forest Road, 5.0 km from the Forest Station, is in a large glade, surrounded by dense forest.

To get to the Campsite, turn LEFT at the Forest Station onto the Main Forest Road (as above, under the directions for the Eastern Summit Trail). Drive on, past the starting point for the Eastern Summit Trail, until you get to Forest Glade.

Approach 2: Naivasha to Ndabibi Gate

From Naivasha, follow Moi South Lake Road for 24 km to Kongoni, where the tarmac ends. Set your distance marker to zero; then branch right, onto Moi North Lake Road, which can be rough and very dusty. On the right, you will pass, at distance 5.7 km, the entrance to Crater Lake Lodge. At distance 9.4 km, you will reach a junction with a sign for Aquila Farm.

Turn LEFT at this junction. At distance 13.4 km, you will pass through Ndabibi (Trading Centre). At distance 14.7 km, there is a junction, where you turn RIGHT. At distance 16.1 km, turn LEFT at another junction. Then, at distance 17.2 km, turn RIGHT at yet another junction and proceed to the Gathondia Trading Centre (distance 18.0 km).

Beyond Gathondia, the road deteriorates badly, becoming little more than a narrow, severely eroded

Useful Information

Walking in a forest is never entirely without risk. So visitors to the Mau Eburu Forest are urged to exercise caution. Buffaloes, in particular, can be dangerous if disturbed. The hire of a local guide, familiar with the terrain and with the habits and movements of the buffaloes in the area, is strongly recommended. Visitors can, as an added precaution, book the services of a Kenya Forest Service (KFS) armed-ranger security escort.

Guides: Contact details for knowledgeable guides based in the Naivasha/Mau Eburu area can be obtained from the KFS Eburu Forest Management Office, which can be reached through the Mau Conservancy Regional Office (in Nakuru) on Tel. +254 (0)51–2213478 / 2214059, or E-mail hocmau@kenyaforestservice.org. Enquiries can also be directed to the KFS Ecotourism Office on E-mail ecotourism@kenyaforestservice.org. Guiding arrangements can be made through advance liaison with any one (or more) of the guides.

Admittance Fees: Current rates for entry to the Mau Eburu Forest Reserve, via any of the KFS gates, are: Adult Citizens – KSh 200; Child Citizens (under 18) – KSh 50; Adult Residents – KSh 400; Child Residents – KSh 100; Adult Non-Residents – KSh 600; Child Non-Residents – KSh 150. camping fees (for Citizens, Residents, and Non-Residents alike) are: KSh 650 per adult per night, and KSh 100 per child per night. These rates, valid as of 31 January 2017, are of course subject to change. Up-to-date rates can be obtained from the contacts listed above. The KFS operates a cashless system; so all fees are payable via MPESA. Payment details are posted at the entry points.

Disclaimer: Hikers who attempt the Nature Trails presented in this guidebook do so at their own risk. The Rhino Ark Kenya Charitable Trust, as the publisher of this Guide, cannot be held responsible for any accident – or other incident – which may result in injury, distress, or inconvenience.
track. Vehicles can be left at the Trading Centre, under security arrangements made your guide. A short walk will take you to the Forest Reserve’s southern Ndabibi Gate. The Ndabibi–Forest Glade Circuit begins and ends here, at the Gathondia road-head.

Distance (Kongoni to Ndabibi Gate): approx. 20 km

APPROACH 3 NAKURU TO MOROP GATE

From the A104 Nakuru–Nairobi Highway, take the Pipeline Road, branching off to your right about 12 km from Nakuru. Set your distance marker to zero; then follow this tarmac road, passing the pipeline depot on the right. At distance 19 km, you will pass Elmenteita Police Station and some kiosks on your left. The tarmac ends here. Proceed on the dirt road to a corner junction, at distance 25 km.

Turn RIGHT at this junction. At distance 27.5 km, you will reach Kongasis Trading Centre. About 300 m beyond Kongasis, turn LEFT over a culvert onto a long straight road climbing through small farms and wheat fields. After about 5 km (distance 32.5 km), a 90-degree LEFT turn, followed by a RIGHT turn, and then another RIGHT, leads to Morop (also known as ‘Cypress’) Centre.

About 200 m beyond Morop Centre, after passing a posho mill on the right, there is a junction, at which you turn LEFT. About 400 m further on, after passing a row of shops on the left, there is another junction. Here, you turn RIGHT. This road, after dipping briefly, climbs steeply for 2.8 km to Morop Gate (distance 36.5 km).

About 1.7 km from Morop Gate, on the steep track leading up into the forest, there is a parking area on the left. This is both the starting point and the end-point for the Ngalumoni Cave Trail. It is also the end-point for the Western Summit Trail.

Distance (Nakuru Pipeline Road Junction to Morop Gate): approx. 36.5 km

APPROACH 4a NAKURU TO KAHUHO GATE

As far as Kongasis, this approach follows the same route described above, under Approach 3.

From Kongasis (distance 27.5 km), instead of turning left over the culvert, drive straight on for 9.5 km, until (at distance 37 km) you reach Kahuho Centre. Continue past Kahuho for 1.8 km, to the Kahuho Gate, at the end of this road (distance 38.8 km).

Near the Gate is a KFS Rangers’ Camp, at which visitors should report. Here, vehicles can be parked (under security arrangements made by your local guide and/or by KFS rangers). On your left, about 250 m from the gate, there is a picturesque campsite, known as Kichwa Nyati, shaded by tall Acacia trees. This is both the start- and the end-point of the Litatano Spring (Kahuho) Trail.

Distance (Nakuru Pipeline Road Junction to Kahuho Gate): approx. 39 km

APPROACH 4b GILGIL TO KAHUHO GATE

This option may suit parties approaching from the Naivasha side. At the Gilgil Intersection on the A104 Naivasha–Nakuru Highway, turn LEFT at the overpass/bridge onto the dirt road leading to Jaika. Set your distance marker to zero; then follow this road for 10 km to a junction, near a rocky hill on the left known locally as Mlima Nugu (Baboon Hill).

Turn RIGHT at this junction. Then drive on through Jaika (distance 12.5 km) until you get to a junction at distance 25 km. Turn LEFT and proceed for 2.5 km to Kongasis (distance 27.5 km). From Kongasis, follow the directions given above, under Approach 4a.

Distance (from Gilgil Intersection to Kahuho Gate): approx. 39 km

ACCESS via PUBLIC TRANSPORT

Eburu can be reached using public transport. There are matatus from:

- **Naivasha town** (bus stage off Mbaria-Kaniu Road), via South Lake Road to Ndabibi, or via Morendat to Eburru Centre, from where motorcycle taxis can be taken to the forest.

- **Nakuru** (Railway Station bus stop), via Pipeline Road to Kahuho. Visitors alighting at Kongasis Centre can hire motorcycle taxis to Ole Sirwa (MPESA Foundation) Gate, or to Morop Gate. Visitors alighting at Kiambogo Centre can hire motorcycle taxis to Kahuho Gate.
The Eastern Summit Trail

ROUTE NOTES

EASTERN Summit, 2,855 m above sea level, is Mount Eburu’s highest point. The Eastern Summit Trail, while not the quickest or most direct ascent route, is perhaps the most rewarding scenically.

The Trail is a 5.2-km circuit, starting 3.7 km from the Eburu Forest Station, on a right-branching side-track off the Main Forest Road, at altitude 2,571 m. From here, the Trail climbs gently at first, on a NE-bearing footpath, before rising steeply after 800 m. At distance 1.9–2.1 km, the Trail levels out, in skirting the eastern rim of the spectacular Keringet Crater (altitude 2,730 m).

Climbing steeply again for a further 1.4 km, the Trail leads to the crest of the Eburu Summit Ridge. The summit peak, rising from the eastern end of this long ridge, high above the KenGen Geothermal Plant, is easily reached. In all, this ascent is a hike of about 3.6 km.

From Eastern Summit, a 1.6-km descent, down a steep track heading directly south, leads back to Main Forest Road, at a point close to the Eburu Forest Station. The whole Trail can be completed in 4–5 hours at a leisurely walking pace, allowing for a picnic stop along the way and for frequent sightseeing breaks.

ACCESS

Access by road to Eburu Forest Station is described under APPROACH 1 in the section Getting to Eburu (pp. 55–57). Access, from the Forest Station to the Trail’s starting point, on Main Forest Road, is also described.

The Trail begins and ends at different points, so hiking parties wishing to complete the whole circuit may have to get a driver to drop them off at the starting point and then collect them later from the Forest Station. The alternative – that of leaving your vehicle at the Forest Station – will mean having to walk an additional 3.7 km along Main Forest Road, to the starting point of the Trail. A direct ascent from the Forest Station (and then returning the same way) is another option.

The Trail is overgrown in places, and the path may not be obvious. So it is best to hire a local guide.

DRAMATIC upland scenery and spectacular, panoramic vistas of the Great Rift Valley and its flanking walls are features of the Eastern Summit Trail. This summit, as the roof of Mount Eburu, commands magnificent views, of Lake Naivasha and Mount Longonot to the south-east, and of Lakes Elmentaita and Nakuru to the north and north-west.

Other scenic features of the Trail include the dramatic depression of the Keringet Crater, skirted during the ascent, and the precipitous rock-cliffs overlooking Songoloi, to the north.

The Trail climbs through dense Dombeya forest, interspersed with scattered Prunus africana trees. Dominant, along the Trail’s upper reaches, are majestic Podocarpus trees and thickets of African Mountain Bamboo.

In these sheltered habitats, wild animals – of various species, including Harvey’s Red Duikers, Bushbuck, and even Giant Forest Hogs – may be encountered, while occasionally signs of the elusive Mountain Bongo, too, may be found. Guereza (Black-and-White) Colobus Monkeys are common in the Bamboo Zone around the Eastern Summit. Some caution is called for, however, in that African Buffaloes may also be present, resting up in tangled thicketies here.
For birdwatching, the Eastern Summit Trail can be very rewarding, particularly for seeing raptors. Peregrine Falcons and Verreaux’s (Black) Eagles are among the raptor species to look out for, overflying the steep-falling rock-cliffs below Summit Ridge, or else from viewpoints lower down the mountain, on the rim of the Keringet Crater.

Near the summit, a large clearing, overseen by a lone *Cussonia spicata* tree festooned in *Usnea* (‘Old Man’s Beard’) lichen, provides the ideal picnic site, where you can simply relax – and enjoy the crisp, bracing mountain air.

On the descent to the Eburu Forest Station, through thickets of *Dombeya*-dominated secondary forest vegetation, billowing white clouds of steam from the nearby KenGen Geothermal Plant can usually be seen – rising high into the air.
EXTENSIVE tracts of unspoiled primary forest, replete with magnificent old trees, are a feature of Mau Eburu’s scenic Western Summit Trail. Through gaps among the trees, this exhilarating Nature Trail offers stunning views as well – of Lake Nakuru, to the north, and of Lake Naivasha to the south-east, seen over the closed canopy of the forest below.

Among the striking trees which line sections of the route are some fine examples of Allophylus abyssinicus, Podocarpus milanjianus, Prunus africana, Dombeya torrida, Ekebergia capensis, Rapanea melanophloeos, Olea capensis ssp. macrocarpa (‘East African Olive’), and Schefflera volkensii. Around this summit, known to members of the local Ogiek (Il Torobo) community as Emoguo Ereko (‘Hill of Red Soil’), there is an extensive belt of African Mountain Bamboo.

The sinuous coils of climbing lianas envelop the trunks and hang from the branches of many of the taller trees, some of which are festooned in mosses and lichens as well.

These undisturbed forest habitats support a rich and diverse wild fauna. Bushbuck and Harvey’s Red Duikers, both common here, are often glimpsed, picking their way through the undergrowth or bounding off. Sounders of Giant Forest Hogs, too,
may be encountered here. And signs of African Buffaloes, and of prowling Leopards, may also be found in these habitats.

The abundant birdlife on view may include those stunning forest species, Hartlaub's Turaco and the Bar-tailed Trogon.

Other attractive features of the Mau Eburu Forest's Western Summit Trail include '46 Dam – an old weir built in colonial times to capture water from a natural spring located at the head of the Saimo Valley (Mukuru wa Saimo). Also known as Lengina (meaning Obsidian, a locally plentiful volcanic rock), this dam is a tranquil spot, visited by wildlife and fringed by tall Dombeya trees. In the valley below, beneath a spectacular, sheer rock-face frequented by hyraxes, there is a magnificent old Juniperus procera ('African Pencil Cedar') forest.

All in all, the Western Summit Trail offers a thrilling introduction to some of the least disturbed and most beautiful parts of the Eburu Forest.
The Deep Valley (Waterfall) Trail

ROUTE NOTES

THE Deep Valley Trail explores the narrow and precipitous upper reaches of the dramatic Ndabibi River Valley, south of Mount Eburu’s imposing Western Summit. A spectacular waterfall, cascading over the sheer rock-face at the head of this valley, is the Trail’s principal attraction. The Trail begins from, and returns to, the Central Forest Glade Campsite (altitude 2,519 m).

The Trail starts with a gradual ascent, climbing NW along the ridge leading up to the Western Summit, as described under the Western Summit Trail (pp. 64–65). But then, after 1 km, the Trail branches off to the SW, down a steeply-descending side-ridge. After descending for some 500 m, through dense forest, the Trail bears south, on tracks skirting the edge of, and then leading steeply downward into, the spectacular chasm that is the Ndabibi River Valley.

In some places, the ground-cover here is so dense, there is no obvious route. So the services of an experienced leader or guide are essential. Waterproof hiking boots are also recommended. At one point, about 2 km into the Trail, the descent is very steep and challenging, calling for careful use of available hand- and footholds. The Ndabibi River, on the valley floor, is a clear, shallow stream, flowing around moss-covered boulders and shaded by luxuriant tree-ferns, which also festoon the walls of the valley. A walk of about 300 m upstream, between the flanks of the deep, narrowing chasm, leads to the Deep Valley Waterfall.

From the waterfall, you can retrace your steps, in climbing out of Deep Valley and returning to the Central Forest Glade Campsite. The walk, to the waterfall and back, covers a distance of no more than about 4.6 km. But, in view of the formidable terrain, 4–5 hours may be required to complete the Trail. This will allow plenty of time in which to savour the stunning scenery along the way.

ACCESS

Access by road to Central Forest Glade Campsite is described under APPROACH 1 in the section Getting to Eburu (pp. 55–57).

The Ndabibi River Valley, known as Deep Valley, harbours some of the most rugged and dramatic scenery to be found within the Mau Eburu Forest. A hike in this secluded valley, although demanding physically, makes for an exhilarating adventure experience.

Spectacular forest-covered cliffs and bare walls of sheer, exposed rock line both sides of the valley, which in places is so narrow, and so deep, that only a thin sliver of sky can be seen overhead. This stupendous chasm is the result of aeons of gouging action by the headwaters of the Ndabibi River, one of Mau Eburu’s most important water catchments.

The sound of rushing water can be heard while negotiating the steep descent, into the depths of this great chasm. The river, here on the upper valley floor, is little more than a shallow, tinkling mountain stream. On the walk upstream, through fringing beds of ferns and over slippery, sodden turf, the valley’s towering walls close in dramatically, almost meeting in some places. And the sound of the splashing water becomes louder.

A spectacular waterfall then stops you in your tracks. The cascading water, tumbling from a rock-shelf on the narrow cliff high above, falls ten metres or so into a small pool, raising a fine spray. Here, over the mouth of the waterfall, the valley’s two
flanks come together. From the pool beneath the waterfall, only a thin strip of sky is visible overhead. Around this pool, the spoor of Mountain Bongos and of Giant Forest Hogs and other wild animals is very often evident.

The climb, out of Deep Valley, is one of the Trail’s most challenging manoeuvres. The physical demands, both of this climb and of the earlier descent, coupled with the stunning forest scenery on view at every turn, give the Deep Valley Trail the uniquely satisfying appeal of a genuine, full-blooded wilderness adventure.
The Ndabibi–Forest Glade Trail

THE Ndabibi–Forest Glade Trail takes the form of a circuit, covering a distance of 10.7 km. The Trail starts from and returns to the Gathondia road-head, about 900 m outside the Eburu Forest Reserve’s southern Ndabibi Gate. An early start will allow ample time in which to explore the Trail’s scenic upper reaches. An outing of 5–6 hours is recommended.

The circuit begins 600 m inside the Reserve, at a fork in the path at GPS [S0 40.883 E36 13.390]. The ascent is via the left-hand fork. The descent returns on the other fork.

The Trail’s highest point is in closed-canopy forest, 2,538 m above sea level – a climb in elevation of 473 m from the road-head (altitude 2,065 m).

Forest Glade, 5.2 km from the road-head in the central part of the Mau Eburu Forest, is a convenient, open site for picnics – and a good base for sightseeing forays.

Here, the Trail joins the Main Forest Road, the narrow dirt track between the Eburu Forest Station and Ole Sirwa. Following this track to the right (towards the Forest Station), you will approach Sunbird Hill. At a fork, 1.2 km along this track, you veer right, down a steeply descending path, which after 2.8 km rejoins the main Ndabibi Trail, so completing the circuit.

Central Forest Glade, accessible by car from the Eburu Forest Station, is a designated Campsite. Camping parties, then, will be able explore the mature forest more thoroughly. Forest Glade is also the starting point for two of the other Trails that are featured in this guidebook – the Western Summit Trail (described on pp. 64–65) and the Deep Valley (Waterfall) Trail (pp. 66–67).

ACCESS

Access by road to the Gathondia Trading Centre is described under APPROACH 2 in the section Getting to Eburu (pp. 55–57). From Gathondia, the track leading up to the road-head is in very poor condition. So vehicles may have to be left at the Trading Centre. Secure parking can be arranged by your local guide.

The obvious attraction of the Ndabibi–Forest Glade Circuit is the opportunity it presents to explore, on foot, parts of the closed-canopy forest lining upper sections of the Trail. Scenic views, over the forest canopy, towards Eastern Mau on the Rift Valley wall, and out across the Lake Naivasha Basin, are another of this Trail’s appealing features.

In the forest, you may get to see Bushbuck and Harvey’s Red Duikers. Giant Forest Hogs too have been encountered here, and Blue Monkeys may be seen up in the canopy. There is an active African Crowned Eagles’ nest beside the Trail, high amid the forked branches of a towering forest tree.

Birding in the mature forest around Forest Glade can be hugely rewarding. Here, forest birds of shy species may be seen, among foraging mixed-species flocks. Locating and then scanning such flocks, though, can be quite a challenge – calling for patience and perseverance.

Wild flowers that may catch the eye include the vivid orange-red blooms of the bristly, trailing herb Desmodium repandum. Plume Moths, small and
ghostly pale, are among the many hiding insects that you, with your boots, may flush from the cover of lowly Balsams and other shade-loving plants on the forest floor.

Here, on steep, slippery trails plied by wild animals, all may seem eerily quiet at times. But then, suddenly, a Bushbuck may bark out the alarm, whereupon other creatures – of identities unknown – may be heard crashing through the undergrowth. Then all will fall eerily silent again. A Yellow-whiskered Greenbul, somewhere in the under-canopy, may resume its plaintive refrain; or, further away, the resonant, ascending calls of Hartlaub’s Turacos may reverberate around the forest. Here, it is what you hear, as much as what you see, which imparts a thrilling awareness of the forest’s abundant life.

Habitats lining the Trail’s lower sections range from Acacia-dominated woodland and scrub to partially degraded forest areas covered in tangled thickets of secondary vegetation overrun in places with stinging nettles, Ipomoea creepers, and other colonising plants. The Trail here follows the eroded course of an old cattle-track. Even these habitats, ravaged in the past by repeated fires, are worth exploring, however, inasmuch as they still harbour a richly varied wild fauna – of birds especially.
SET back from a narrow shelf of rock in the side-wall of a deep valley, the Ngalumoni Rock Shelter, shielded by the tops of tall trees growing on the valley floor, is very well concealed. The shelter is not visible until you are on the ledge beside its mouth, which is recessed beneath a blackened ceiling of overhanging rock.

The Ngalumoni Rock Shelter has long been used by members of the Ogiek (Il T orobo) community as a base from which to gather honey from traditional beehives in this part of the Mau Eburu Forest. Smoke from the cooking fires of generations of itinerant hunter-gatherers has blackened the roof and the walls of the shelter.

The ledge affording access to the shelter is no more than eight metres long, and in places it is no wider than two or three metres. Reaching back for about five metres into the rock-face, Ngalumoni offers shelter from driving rain, and is screened from swirling winds by the upper foliage of fringing trees rooted in the valley directly below.

This secluded rock shelter is just one of many interesting features of the Ngalumoni (Cave) Trail. Especially rewarding is the dramatic scenery along the way. One viewpoint, 1.8 km from the start of the Trail, at GPS [S0 39.712 E36 10.702],
commands a spectacular vista down a rugged, steep-sided valley flanked by tumbling, spiny ridges, with Lake Naivasha in the distance.

Above the forest lining the Trail, there are some impressive stands of Juniperus procera (‘African Pencil Cedar’) and Podocarpus milanjianus (‘Podo’) trees, interspersed with thickets of African Mountain Bamboo. Looking out over the closed forest canopy, you may see foraging troops of Guereza (Black-and-White) Colobus Monkeys and Blue Monkeys. Signs of buffaloes may also be evident, and even Mountain Bongos are known to visit this area from time to time. Here, the combination of fruiting trees and abundant insect life also attracts upland forest birds of many species.

An invigorating walk in cool, bracing mountain air, the Ngalumoni Trail offers one of the most rewarding introductions to the upper reaches of the Mau Eburu Forest.
Litatano Spring (Kahuho) Trail

ROUTE NOTES

LITATANO is the name of a small spring issuing from the head of a secluded valley, 3 km inside the NW (Kahuho) sector of the Mau Eburu Forest Reserve. The Trail, to and from this spring, is a gentle hike of 6 km, starting from and returning to Kahuho Gate, on the Forest Reserve’s NW boundary.

The Litatano Spring (Kahuho) Trail can be completed in 3–4 hours – at a leisurely walking pace, allowing for a picnic stop along the way and for frequent sightseeing breaks.

Heading SE from the Kahuho Gate, the Trail follows a broad ridge between deep, forested valleys. It then rises gently for 1.4 km (to altitude 2,449 m), before plunging into the lush green Kahuho Valley into which the Litatano Spring drains. After descending for 1 km (to altitude 2,327 m), the Trail climbs steeply eastward for 600 m, in leading up into the head of the narrowing valley.

Here, at altitude 2,479 m, at the base of a small cliff, festooned with plants and flanked by tall trees, the Litatano Spring emerges, forming a small pool. This pool makes for an ideal picnic stop – and is a good base too for sightseeing forays in the thickly vegetated upper Kahuho Valley.

In this valley, as in other valleys in the Eburu Forest Reserve, rampant Stinging Nettles, chest-high in places, can be a severe impediment. So visitors are advised to wear protective clothing, in the shape of long trousers, over long socks, and shirts or jackets with long sleeves.

ACCESS

Access by road to the Kahuho Gate is described in detail under APPROACH 4 in the section Getting to Eburu (pp. 55–57). Two approach options are presented – one via the Pipeline Road from Nakuru, and the other from the Gilgil Intersection on the A104 Nairobi–Nakuru Highway.

About 270 m beyond the Kahuho Gate, in a clearing ringed by tall Acacia trees (at altitude 2,355 m), there is an attractive Campsite, known as Kichwa Nyati (Buffalo Head). This site was once used as a field operations’ base by forest rangers with the Mau Task Force.

The Litatano Spring (Kahuho) Trail traverses a range of contrasting habitats – from open Acacia woodland and scrub at the lower elevations, through a wide belt of Tarchonanthus camphoratus (Leleshwa Bush) woodland, to tall stands of mixed broad-leaf upland forest, giving way, higher up, to open-canopy Juniperus procera (‘African Pencil Cedar’) forest.

These contrasting natural habitats support a correspondingly varied wild fauna. This variety is reflected above all in the abundant local birdlife along the way, making this an especially rewarding trail for birdwatchers. Sunbirds, in particular, of several species, including the dazzling Golden-winged Sunbird, are usually conspicuous, on and around flowering path-side shrubs. Long-crested Eagles, Lophaëtus occipitalis, too, can usually be seen, perched atop isolated trees. And, in the sky above, soaring Augur Buzzards, Buteo augur, are a common sight.

During the ascent, through flanking Leleshwa bushes, the horizon ahead is dominated by Mount Eburu’s imposing Western Summit, itself often wreathed in a veil of swirling clouds. The silvery-grey Leleshwa leaves (long and thin, and with pale, furry undersides) are aromatic, yielding a camphor-like scent when crushed; hence the specific name camphoratus.
The lush surroundings of the Trail’s upper reaches, nestled deep within the Kahuho Valley, can be particularly rewarding, both scenically and for locating and watching birds. A grove of tall trees lining this section of the route, on the way up to the Litatano Spring, is home to one of the Kahuho Valley’s resident Guereza (Black-and-White) Colobus troops.

Prominent among the trees growing on the valley floor are some towering examples of Prunus africana and Dombeya torrida.

The ground-cover on the moist valley floor below the spring is despairingly dense in places and rife with clumps of Stinging Nettles. The Litatano Spring itself, at the base of a small cliff covered with ferns and trailing herbs, is a delightfully peaceful spot, visited by animals and birds, and surrounded by beds of leafy herbs and shrubs, partially shaded by tall fringing trees.

This secluded and tranquil setting makes the Litatano Spring an ideal picnic stop – and a good base for sightseeing forays in the upper Kahuho Valley.
Credits and Acknowledgements

This guidebook is just one of many tangible outcomes of the ongoing Eburu Ecosystem Conservation Project, operated jointly by the Rhino Ark Kenya Charitable Trust, the Kenya Forest Service, and the Kenya Wildlife Service.

Without the vision, commitment, and generous financial support of the M-PESA Foundation, this publication – like so many of this Project’s other completed outputs to date – would not have been possible. The Kenya Forest Service (KFS), for its part, as custodian of the Mau Eburu Forest, has for many years provided both the personnel and the logistical back-up which, in the field, have enabled Rhino Ark to gather much of the material that is presented in this guidebook.

Rhino Ark has been fortunate too in being able to draw on the pooled expertise and encouragement of several extremely knowledgeable and dedicated individuals. Patrick Kiita, of the KFS, in particular, while he was Manager of the Mau Eburu Forest, contributed massively to the field-work on which this Visitors’ Guide is based.

The work of the Bongo Surveillance Project (BSP) has been another very important resource. Community naturalist and BSP Head Scout for Eburu Solomon Muriithi, in particular, with his thorough knowledge of the forest and its wildlife, provided us with a wealth of information, while guiding many of our field trips.

Data collected in the forest by Solomon and by other community scouts, with the help of BSP remote surveillance cameras, have considerably enhanced our understanding of Mountain Bongo ecology and behaviour, while at the same time also shedding valuable light on other wild species that occur in the forest.

Other knowledgeable guides from within the local Eburu community who helped with the plotting and mapping of the Walking Trails that are presented in this guidebook include Douglas Gachucha, who also weighed in with valuable inputs on the forest’s birdlife; Joseph Lengetu, who provided information on the Ogiek people and their knowledge of the forest and its plants, and James Kirui, who likewise shared with us his knowledge of the trails in the forest. Joseph Mutongu, of Rhino Ark, took care of the logistics on countless field trips, while also helping with the identification of some of the flora and the fauna.

In compiling this Visitors’ Guide, Rhino Ark was fortunate, moreover, in being able to draw on the findings of several researchers and scientists who at one time or another have visited the Mau Eburu Forest. The work of botanist Quentin Luke and of his wife Patricia Luke, has been especially helpful, in leading to a fuller understanding of the forest flora. The Plant Checklist for Eburu Forest Reserve, compiled in March 2016 by WRQ Luke, M Hoef and Ndeche, is today the definitive reference on the flora of Mau Eburu.

A 2009 study, Assessment of Vegetation Cover and Biological Diversity Hotspots in the Mau Forests Complex, compiled by a team of scientists from the National Museums of Kenya, has been another very helpful background resource. The findings of the Kenya Bird Map team that in 2016 carried out field surveys of the birdlife found in different parts of the Mau Eburu Forest has also been useful, in helping to develop a preliminary Bird Checklist.

Rhino Ark has been able, from its own records, to supply nearly all of the images reproduced in this Visitors’ Guide. But some photographs (depicting birds and mammals of elusive species, primarily) have had to be sourced externally. In all such cases the photographers are accredited alongside their images. Rhino Ark is especially grateful to those who, in support of the Mau Eburu conservation effort, have been kind enough to make selections of their images available.

Rhino Ark is also grateful for the encouragement and the hospitality that it received, while developing this guidebook, from community conservation networks and from tourism establishments around Lake Naivasha. Nigel and Sarah Carnelley, of Fisherman’s Camp, in particular, hosted several fact-finding trips to the area, while also contributing invaluable suggestions and comments, based on their long association with the Mau Eburu Forest and their work there with the Bongo Surveillance Project.
About RHINO ARK

Established in 1989, Rhino Ark is a charitable trust wholly dedicated to addressing the challenges facing mountain forest ecosystems in Kenya, known as ‘water towers’. In particular, Rhino Ark’s aims are:

- To conserve ecologically precious indigenous forests of national importance, and to safeguard the vital ecosystem services which the forests provide;
- To create sustainable, stable environments wherein people and wildlife, including all native flora and fauna, can co-exist;
- To develop, for the benefit of forest-edge communities, income-generating economic activities that are based on sustainable use of forest resources and ecosystem services;
- To mobilise support, nationally and globally, for initiatives that protect and conserve productive, biologically diverse habitats for present and future generations of Kenyans, through a responsible, managed use of forest resources and ecosystem services;
- To raise the funds and other forms of wherewithal needed to sustain effective long-term ecological management programmes, so these can be extended across entire ecosystems;
- To establish, through public-private partnerships, frameworks allowing wider society and forest-adjacent communities to participate jointly in management processes, and
- To develop mechanisms through which to prevent illegal exploitation of forest habitats wherever threats arise.

Rhino Ark’s conservation agenda is anchored in three key principles:

- Respect for and protection of ecosystem integrity;
- Provision for full involvement of, and participation by, local communities, and
- The cementing of effective management partnerships.

Rhino Ark works closely with government conservation and environmental agencies, under public/private partnerships, in all the mountain ecosystems where it operates. This collaborative approach, drawing on the different strengths of the respective partners, has proved highly effective, while also avoiding wasteful duplication of effort.

Since its inception, Rhino Ark has specialised in raising funds for conservation. The popular annual off-road motorsport challenge, the Rhino Charge, has been a cornerstone of the fund-raising effort. Through this event, thousands of Kenyans, along with the many Friends of Rhino Ark from abroad, have contributed to the Trust’s conservation activities. Funding from the Government of Kenya and from the Kenyan corporate sector, together with invaluable in-kind support, has been instrumental in facilitating the work of Rhino Ark.

As part of its drive to promote awareness and to encourage popular participation in its conservation activities, the Rhino Ark Kenya Charitable Trust produces a range of publications, including a regular news magazine, ARKive. This Visitors’ Guide, as the first publication of its kind on the Mau Eburu Forest, is another big step in Rhino Ark’s campaign to bring people together in the common cause of conserving Kenya’s precious water-tower forests and their priceless biological diversity.

Further information on the Rhino Ark Kenya Charitable Trust is posted on www.rhinoark.org.
Map of the three water towers where Rhino ark is operating
The Mau Eburu Forest is nestled within the folds of a geologically active volcanic massif NW of Lake Naivasha in Kenya’s picturesque central Rift Valley region. It is one of the few remaining haunts of the critically endangered Mountain Bongo antelope.

Historically, this forest formed part of the vast Mau Forests Complex, west of the Rift Valley – one of East Africa’s most important water catchments. Today, Mau Eburu, surrounded by farmlands and settlements, is a biogeographic ‘island’. Yet the biological diversity it harbours is uncommonly rich, extending to plants and animals of many species, some of them now rare and threatened.

On steep ridges and in deep valleys cradling secluded mountain springs, the Mau Eburu Forest is also a place of outstanding natural beauty. Life in the forest, along with Mau Eburu’s many stunning features, are showcased – for the first time – in this comprehensive and exquisitely illustrated Visitors’ Guide. In presenting a choice of exhilarating nature trails, this Guide gives visitors the chance to explore Mau Eburu, and to experience – at first hand – the wonders of this beautiful and precious upland forest.

‘At once both fascinating and hugely informative, this splendid Guide is irresistible in making you want to connect with Eburu. There can be no better introduction to the wonders of this magnificent forest!’

– Dr Dino J. Martins, Executive Director, Mpala Research Centre